cho \(x,y\ne0\).Tìm GTNN của biểu thức:
\(B=\frac{x^2}{y^2}+\frac{y^2}{x^2}-3(\frac{x}{y}+\frac{y}{x})+5\)
ai đúng mình tik cho nhá =))
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2x^2-x=3-6x\)
\(\Leftrightarrow2x^2-x-3x+6x=0\)
\(\Leftrightarrow2x^2+2x=0\)
\(\Leftrightarrow2x\left(x+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}2x=0\\x+1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=-1\end{cases}}}\)
b) \(\left(x+2\right)\left(x^2-3x+5\right)=\left(x+2\right)x^2\)
\(\Leftrightarrow x^2-3x+5=x^2\)
\(\Leftrightarrow x^2-3x+5-x^2=0\)
<=> -3x+5=0
<=> \(x=\frac{5}{3}\)
a) 2x^2 - x = 3 - 6x
<=> 2x^2 - x - 3 + 6x = 0
<=> 2x^2 + 5x - 3 = 0
<=> (2x - 1)(x + 3) = 0
<=> 2x - 1 = 0 hoặc x + 3 = 0
<=> 2x = 0 + 1 hoặc x = 0 - 3
<=> 2x = 1 hoặc x = -3
<=> x = 1/2 hoặc x = -3
b) (x + 2)(x^2 - 3x + 5) = (x + 2)x^2
<=> x^3 - 3x^2 + 5x + 2x^2 - 6x + 10 = x^3 + 2x^2
<=> x^3 - 3x^2 + 5x + 2x^2 - 6x + 10 - x^3 - 2x^2 = 0
<=> 3x^2 + x - 10 = 0 (đổi dấu)
<=> 3x^2 + 6x - 5x - 10 = 0
<=> 3x(x + 2) - 5(x + 2) = 0
<=> (3x - 5)(x + 2) = 0
<=> 3x - 5 = 0 hoặc x + 2 = 0
<=> 3x = 0 + 5 hoặc x = 0 - 2
<=> 3x = 5 hoặc x = -2
<=> x = 5/3 hoặc x = -2
\(\frac{1}{1+a^2}+\frac{1}{1+b^2}\le\frac{2}{1+ab}\) (1)
<=> \(\frac{1+a^2+b^2+1}{\left(1+a^2\right)\left(1+b^2\right)}\le\frac{2}{1+ab}\)
>=> \(\frac{4}{\left(1+a^2\right)\left(1+b^2\right)}\le\frac{2}{1+ab}\)
<=> 2 ( 1 + ab) \(\le\)1 + a^2 + b^2 + a^2b^2
<=> a^2 b^2 -2ab + 1 \(\ge\)0
<=> (ab - 1 ) ^2 \(\ge\)0 đúng với mọi số thực dương a, b
vậy (1) đúng với mọi số thực dương a, b
Dấu "=" xảy ra <=> ab = 1 và a^2 + b^2 = 2 <=> a = b = 1