Tìm số nguyên x để A=7*x-5/2*x+1 có giá trị lớn nhất . Tìm giá trị lớn nhất đó
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.
OB song song O'C \(\Rightarrow\widehat{BOA}+\widehat{CO'A}=180^0\) (hai góc trong cùng phía)
Do \(OA=OB=R\) và \(O'A=O'C=R'\) nên các tam giác OAB và O'AC cân tại O và O'
\(\Rightarrow\left\{{}\begin{matrix}\widehat{OAB}=\widehat{OBA}\\\widehat{O'AC}=\widehat{O'CA}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}\widehat{OAB}=\dfrac{180^0-\widehat{BOA}}{2}\\\widehat{O'AC}=\dfrac{180^0-\widehat{CO'A}}{2}\end{matrix}\right.\)
\(\Rightarrow\widehat{BAC}=180^0-\left(\widehat{OAB}+\widehat{O'AC}\right)=180^0-\left(\dfrac{180^0-\widehat{BOA}}{2}+\dfrac{180^0-\widehat{CO'A}}{2}\right)\)
\(=180^0-\left(180^0-\dfrac{\widehat{BOA}+\widehat{CO'A}}{2}\right)=90^0\)
\(\Rightarrow\Delta ABC\) vuông tại A
b.
TH1:
Nếu \(R=R'\) thì OBCO' là hình bình hành (cặp cạnh đối OB, O'C song song và bằng nhau)
\(\Rightarrow BC||O'O\Rightarrow AH\perp O'O\)
Từ B kẻ \(BK\perp O'O\Rightarrow AHBK\) là hình chữ nhật (tức giác có 3 góc vuông)
\(\Rightarrow AH=BK\le OB=R=R'\)
Dấu "=" xảy ra khi K trùng O hay BC vuông góc OB \(\Rightarrow BC\) là tiếp tuyến của (O)
TH2:
Nếu \(R\ne R'\), không mất tính tổng quát giả sử \(R>R'\)
Kéo dài BC và O'O cắt nhau tại D
Từ O kẻ \(OK\perp BC\)
Áp dụng định lý Talet: \(\dfrac{DO'}{DO}=\dfrac{OC'}{OB}=\dfrac{R'}{R}\)
OK và AH cùng vuông góc BC \(\Rightarrow OK||AH\)
Áp dụng định lý Thales:
\(\dfrac{AH}{OK}=\dfrac{DO'}{DO}=\dfrac{R'}{R}\Rightarrow AH=\dfrac{R'}{R}.OK\)
\(\Rightarrow AH_{max}\) khi \(OK_{max}\)
Mà \(OK\perp BC\Rightarrow OK\le OB\) (đường vuông góc ko lớn hơn đường xiên)
\(\Rightarrow OK_{max}=OB=R\)
\(\Rightarrow AH_{max}=\dfrac{R'}{R}.R=R'\)
Dấu "=" xảy ra khi K trùng B hay BC là tiếp tuyến của (O)
ta xét:
hàng nghìn:4 cách chọn
hàng trăm: 3 cách chọn
hàng chục: 2 cách chọn
hàng đơn vị: 1 cách chọn.
=> ta có: 4x3x2x1=24 cách chọn.
\(A=\dfrac{2^{12}.3^5-4^6.9^2}{\left(2^2.3\right)^6+8^4.3^5}-\dfrac{5^{10}.7^3-25^5.49^2}{\left(125.7\right)^3+5^9.14^3}\)
\(=\dfrac{2^{12}.3^5-\left(2^2\right)^6.\left(3^2\right)^2}{\left(2^2\right)^6.3^6+\left(2^3\right)^4.3^5}-\dfrac{5^{10}.7^3-\left(5^2\right)^5.\left(7^2\right)^2}{\left(5^3\right)^3.7^3+5^9.\left(7.2\right)^3}\)
\(=\dfrac{2^{12}.3^5-2^{12}.3^4}{2^{12}.3^6+2^{12}.3^5}-\dfrac{5^{10}.7^3-5^{10}.7^4}{5^9.7^3+5^9.7^3.2^3}\)
\(=\dfrac{2^{12}.\left(3^5-3^4\right)}{2^{12}.\left(3^6+3^5\right)}-\dfrac{5^{10}.7^3.\left(1-7\right)}{5^9.7^3.\left(1+2^3\right)}\)
\(=\dfrac{1}{6}-\left(\dfrac{-10}{3}\right)\)
\(=\dfrac{7}{2}\).
Gọi số có ba chữ số cần tìm là \(abc\)
Nếu viết thêm chữ số 9 vào bên trái ta được số \(9abc\)
Theo đề ra, ta có:
\(9abc=abc\times51\)
\(9000+abc=abc\times51\)
\(9000=abc\times51-abc\)
\(9000=abc\times\left(51-1\right)\)
\(9000=abc\times50\)
\(abc=9000:50\)
\(abc=180\)
Vậy số cần tìm là 180.
do A=2024 => \(\left|x+2023\right|=2024\)
\(\Leftrightarrow\left[{}\begin{matrix}x+2023=2024\\x+2023=-2024\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2024-2023\\x=-2024-2023\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-4047\end{matrix}\right.\)
vậy x \(\in\left\{-4047;1\right\}\)
Chu vi của bánh xe ô tô hình tròn đó là:
\(0,65\times3,14=2,041\left(m\right)\)
Vậy muốn đi được quãng đường 1632,8m thì bánh xe cần lăn:
\(1632,8:2,041=800\left(vòng\right)\)
Đáp số: \(800\) vòng.
chịu
giúp tôi với