K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 10 2019

theo nguyên lí Dirichlet thì trong 3 số a, b, c có ít nhất 2 số cùng dấu, giả sử 2 số đó là b, c hay \(bc\ge0\)

=> \(a^2+b^2+c^2\le a^2+\left(b^2+2bc+c^2\right)=a^2+\left(b+c\right)^2=a^2+\left(-a\right)^2=2a^2< 2\)

10 tháng 10 2019

Theo giả thiết \(\sqrt{\frac{yz}{x}}+\sqrt{\frac{xz}{y}}+\sqrt{\frac{xy}{z}}=3\)

\(\Rightarrow\frac{yz}{x}+\frac{xz}{y}+\frac{xy}{z}+2x+2y+2z=9\)

Mặt khác , ta có BĐT phụ : \(\frac{yz}{x}+\frac{xz}{y}+\frac{xy}{z}\ge x+y+z\)

\(\Rightarrow9\ge3\left(x+y+z\right)\)

\(\Leftrightarrow x+y+z\le3\)

Áp dụng BĐT Cauchy Shwarz \(\Rightarrow\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)^2\le3\left(x+y+z\right)\le9\)

\(\Rightarrow\sqrt{x}+\sqrt{y}+\sqrt{z}\le3\)

Ta có : \(P=\sqrt{x}+\sqrt{y}+\sqrt{z}+\frac{2016}{\sqrt{x}+\sqrt{y}+\sqrt{z}}\)

\(=\sqrt{x}+\sqrt{y}+\sqrt{z}+\frac{9}{\sqrt{x}+\sqrt{y}+\sqrt{z}}+\frac{2007}{\sqrt{x}+\sqrt{y}+\sqrt{z}}\)

\(\ge2.\sqrt{9}+\frac{2007}{3}=675\)

Dấu "=" xảy ra \(\Leftrightarrow x=y=z=1\)

Chúc bạn học tốt !!!

11 tháng 10 2019

<=> (a2+b2)(a+b)2- 2(a+b)2 +1+ a2b2 -2ab= -4ab <=> (a2+b2)(a2+b2+2ab)- 2(a+b)2+ a2b2+ 2ab+ 1=0

<=> [(a2+b2)2+(a2+b2).2ab+a2b2 ] - 2(a2+b2+2ab)+2ab+1=0 <=> (a2+b2+ab)2- 2(a2+b2+ab)+1=0

<=> (a2+b2+ab-1)2=0 <=> a2+b2+ab-1=0 <=> (a+b)2-(1+ab)=0 <=> (a+b)2 =1+ab => \(\sqrt{1+ab}=\)\(|a+b|\)là số hữu tỉ

15 tháng 8 2020

\(\left(GT\right)\Rightarrow\left[\left(a+b\right)^2-2\left(ab+1\right)\right]\left(a+b\right)^2+\left(1+ab\right)^2=0\)

\(\Leftrightarrow\left(a+b\right)^4-2\left(a+b\right)^2\left(1+ab\right)+\left(1+ab\right)^2=0\)

\(\Leftrightarrow\left[\left(a+b\right)^2-\left(1+ab\right)\right]^2=0\Rightarrow\left(a+b\right)^2-\left(1+ab\right)=0\)

\(\Leftrightarrow\left(a+b\right)^2=1+ab\Leftrightarrow\left|a+b\right|=\sqrt{1+ab}\left(a,b\inℚ\right)\)

10 tháng 10 2019

Tề Thiên Đại Ngáo