K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 5 2023

Phương trình đã cho có nghiệm phân biệt khi : 

\(\Delta'=m^2-\left(m^2+2m+3\right)=-2m-3>0\)

\(\Leftrightarrow m< -\dfrac{3}{2}\)(*)

Hệ thức Viette : \(\left\{{}\begin{matrix}x_1+x_2=-2m\\x_1x_2=m^2+2m+3\end{matrix}\right.\)

Có \(x_1^3+x_2^3=108\)

\(\Leftrightarrow\left(x_1+x_2\right).\left(x_1^2-x_1x_2+x_2^2\right)=108\)

\(\Leftrightarrow\left(x_1+x_2\right)^3-3x_1x_2\left(x_1+x_2\right)=108\)

\(\Leftrightarrow-8m^3+6m\left(m^2+2m+3\right)=108\)

\(\Leftrightarrow m^3-6m^2-9m+54=0\)

\(\Leftrightarrow\left(m-6\right).\left(m-3\right).\left(m+3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}m=6\\m=\pm3\end{matrix}\right.\)

Kết hợp (*) được m = -3 thỏa mãn

AH
Akai Haruma
Giáo viên
1 tháng 5 2023

Lời giải:
Để pt có 2 nghiệm phân biệt thì:

$\Delta'=m^2-(m^2+2m+2)>0$

$\Leftrightarrow 2m+2<0$

$\Leftrightarrow m< -1$
Áp dụng định lý Viet, với $x_1,x_2$ là nghiệm thì:

$x_1+x_2=2m$

$x_1x_2=m^2+2m+2$

$m^2+2m+2=(m+1)^2+1>0$ nên $x_1,x_2$ luôn khác $0$
Khi đó:

$\frac{2}{x_1}+\frac{2}{x_2}=x_1+x_2$

$\Leftrightarrow 2.\frac{x_1+x_2}{x_1x_2}=x_1+x_2$

$\Leftrightarrow 2.\frac{2m}{m^2+2m+2}=2m$

$\Leftrightarrow 2m(\frac{2}{m^2+2m+2}-1)=0$

$\Leftrightarrow m=0$ hoặc $m^2+2m+2=2$

$\Leftrightarrow m=0$ hoặc $m(m+2)=0$

$\Leftrightarrow m=0$ hoặc $m=-2$ Vì $m< -1$ nên $m=-2$

AH
Akai Haruma
Giáo viên
1 tháng 5 2023

Lời giải:
Để pt có 2 nghiệm phân biệt thì $\Delta'=1-(m-3)>0$

$\Leftrightarrow 4-m>0\Leftrightarrow m< 4$

Áp dụng định lý Viet:

$x_1+x_2=2$

$x_1x_2=m-3$
Khi đó:
$x_1^2-(x_1+x_2)x_2+x_1x_2=-12$

$\Leftrightarrow x_1^2-x_2^2=-12$

$\Leftrightarrow (x_1-x_2)(x_1+x_2)=-12$

$\Leftrightarrow 2(x_1-x_2)=-12$
$\Leftrightarrow x_1-x_2=-6$

Kết hợp với $x_1+x_2=2$ thì $x_1=-2; x_2=4$

$m-3=x_1x_2=(-2).4=-8$

$\Leftrightarrow m=-5$ (tm)

1 tháng 5 2023

Ta có 2x + y = 5 

<=> y = -2x + 5 (d)

Gọi (d1) đồ thị hàm số y = ax + b

Vì (d) // (d1) nên a = -2 ; \(b\ne5\)

=> (d1) có dạng y = -2x + b

Lại có (d1) cắt Ox tại A(3;0) 

=> 0 = -2.3  + b

<=> b = 6

Vậy hàm số có dạng y = -2x + 6

30 tháng 4 2023

 Ta có \(x^2+y^2=1\Leftrightarrow\left(x+y\right)^2=2xy+1\)

 Từ đó \(P=\dfrac{\left(x+y\right)^2}{x+y+1}\). Đặt \(x+y=t\left(t\ge0\right)\). Vì \(x+y\le\sqrt{2\left(x^2+y^2\right)}=2\) nên \(t\le\sqrt{2}\). ĐTXR \(\Leftrightarrow x=y=\dfrac{1}{\sqrt{2}}\). Ta cần tìm GTLN của \(P\left(t\right)=\dfrac{t^2}{t+1}\) với \(0\le t\le\sqrt{2}\)

 Giả sử có \(0\le t_1\le t_2\le\sqrt{2}\). Ta có BDT luôn đúng \(\left(t_2-t_1\right)\left(t_2+t_1+t_2t_1\right)\ge0\) \(\Leftrightarrow t_2^2-t_1^2+t_2^2t_1-t_2t_1^2\ge0\) \(\Leftrightarrow t_1^2\left(t_2+1\right)\le t_2^2\left(t_1+1\right)\) \(\Leftrightarrow\dfrac{t_1^2}{t_1+1}\le\dfrac{t_2^2}{t_2+1}\) \(\Leftrightarrow P\left(t_1\right)\le P\left(t_2\right)\).  Như vậy với \(0\le t_1\le t_2\le\sqrt{2}\) thì \(P\left(t_1\right)\le P\left(t_2\right)\). Do đó P là hàm đồng biến. Vậy GTLN của P đạt được khi \(t=\sqrt{2}\) hay \(x=y=\dfrac{1}{\sqrt{2}}\), khi đó \(P=2\sqrt{2}-2\)

AH
Akai Haruma
Giáo viên
30 tháng 4 2023

Lời giải:
$P=\frac{2xy+1}{x+y+1}=\frac{2xy+x^2+y^2}{x+y+1}=\frac{(x+y)^2}{x+y+1}$

$=\frac{a^2}{a+1}$ với $x+y=a$

Áp dụng BĐT AM-GM:

$1=x^2+y^2\geq \frac{(x+y)^2}{2}=\frac{a^2}{2}$

$\Rightarrow a^2\leq 2\Rightarrow a\leq \sqrt{2}$

$P=\frac{a^2}{a+1}=\frac{a}{1+\frac{1}{a}}$
Vì $a\leq \sqrt{2}\Rightarrow 1+\frac{1}{a}\geq 1+\frac{1}{\sqrt{2}}=\frac{2+\sqrt{2}}{2}$

$\Rightarrow P\leq \frac{\sqrt{2}}{\frac{2+\sqrt{2}}{2}}=-2+2\sqrt{2}$

Vậy $P_{\max}=-2+2\sqrt{2}$ khi $x=y=\frac{1}{\sqrt{2}}$

30 tháng 4 2023

Em với

30 tháng 4 2023

Làm giúp em phần a-b được thì c luôn ạ