Giải phương trình:
\(a,x^2-7x+\sqrt{x^2-7x+8}=12\)
b, \(x^2+4x+5=2\sqrt{2x+3}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
| |x| - 2 | = x + 2
\(\Leftrightarrow\orbr{\begin{cases}\left|x\right|-2=x+2\\\left|x\right|-2=-x-2\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}\left|x\right|=x+4\\\left|x\right|=-x\left(loại\right)\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=x+4\\x=-x-4\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}0=4\left(loại\right)\\2x=-4\end{cases}}\)
\(\Leftrightarrow x=-2\)
câu a tự sắp xếp rồi nha
câu b cot70,tan28,tan33,cot55,cot40
chỉ vậy thui!!!!!ahihi
Ta có : \(\frac{AB}{AC}=\frac{5}{7}\Rightarrow AB=\frac{5}{7}AC\)
Xét tam giác ABC vuông tại A, đường cao AH
* Áp dụng hệ thức : \(\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{AC^2}\Rightarrow\frac{1}{225}=\frac{1}{\left(\frac{5}{7}AC\right)^2}+\frac{1}{AC^2}\Rightarrow AC=3\sqrt{74}\)cm
\(\Rightarrow AB=\frac{5}{7}.3\sqrt{74}=\frac{15\sqrt{74}}{7}\)cm
* Áp dụng hệ thức : \(AH.BC=AB.AC\)
\(\Rightarrow BC=\frac{AB.AC}{AH}=\frac{3\sqrt{74}.\frac{15\sqrt{74}}{7}}{15}=\frac{222}{7}\)cm
Áp dụng định lí Pytago tam giác ABH vuông tại H
\(AB^2=BH^2+AH^2\Rightarrow BH=\sqrt{AB^2-AH^2}=\frac{75}{7}\)cm
\(\Rightarrow HC=BC-BH=\frac{222}{7}-\frac{75}{7}=\frac{147}{7}=21\)cm
\(a,\sqrt{x^2-4x+4}=\sqrt{4+2\sqrt{3}}\)
\(\Leftrightarrow\sqrt{\left(x-2\right)^2}=\sqrt{3+2\sqrt{3}+1}\)
\(\Leftrightarrow\sqrt{\left(x-2\right)^2}=\sqrt{\left(\sqrt{3}+1\right)^2}\)
\(\Leftrightarrow\left|x-2\right|=\sqrt{3}+1\)
\(\Leftrightarrow\orbr{\begin{cases}x-2=\sqrt{3}+1\\2-x=\sqrt{3}+1\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\sqrt{3}+3\\x=1-\sqrt{3}\end{cases}}}\)
Vậy...
\(b,\sqrt{3x^2-4x}=2x-3.ĐKXĐ:x\le0,\frac{4}{3}\le x\)
\(\Leftrightarrow3x^2-4x=\left(2x-3\right)^2\)
\(\Leftrightarrow3x^2-4x=4x^2-12x+9\)
\(\Leftrightarrow4x^2-3x^2-12x+4x+9=0\)
\(\Leftrightarrow x^2-8x+9=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=4+\sqrt{7}\\x=4-\sqrt{7}\end{cases}}\)(t/m ĐKXĐ)
\(\sqrt{\left(x-2\right)^2}\)=\(|\sqrt{3}+1|\)
giải 2 th
phần b bình phương cả hai vế
a,\(x^2-7x+\sqrt{x^2-7x+8}=12\)
ĐKXĐ: .....
Đặt \(x^2-7x=t\)
Phương trình trở thành
\(t+\sqrt{t+8}=12\)
\(\Leftrightarrow\sqrt{t+8}=12-t\)
\(\Leftrightarrow t+8=\left(12-t\right)^2\)
\(\Leftrightarrow t+8=144-24t+t^2\)
\(\Leftrightarrow t^2-25t+136=0\)
\(\Leftrightarrow\left(t-17\right)\left(t-8\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}t-17=0\\t-8=0\end{cases}\Leftrightarrow\orbr{\begin{cases}t=17\\t=8\end{cases}}}\)
tại t = 17 , ta có
\(x^2-7x=17\Leftrightarrow x^2-7x-17=0\)
\(\Leftrightarrow.......\)
Tại t = 8 ta có
\(x^2-7x=8\Leftrightarrow x^2-7x-8=0\)
\(\Leftrightarrow\left(x-8\right)\left(x+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-8=0\\x+1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=8\\x=-1\end{cases}}}\)
b, \(x^2+4x+5=2\sqrt{2x+3}\)
mik ko bt :)
a,đkxđ:\(x^2-7x+8\ge0\Leftrightarrow x^2-2\cdot\frac{7}{2}x+\frac{49}{4}-\frac{17}{4}\ge0\Leftrightarrow\left(x-\frac{7}{2}\right)^2\ge\frac{17}{4}\Leftrightarrow\hept{\begin{cases}x-\frac{7}{2}\ge\frac{\sqrt{17}}{2}\approx2,06\\x-\frac{7}{2}\le-\frac{\sqrt{17}}{2}\approx-2,06\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge5,56\\x\le1,44\end{cases}}\)
\(\Leftrightarrow\left(x^2-7x+8\right)+\sqrt{x^2-7x+8}=12+8=20\)
\(\Leftrightarrow4\left(x^2-7x+8\right)+4\sqrt{x^2-7x+8}+1=20\cdot4+1=81\)
\(\Leftrightarrow\left(2\sqrt{x^2-7x+8}+1\right)^2=81\)
\(\Leftrightarrow2\sqrt{x^2-7x+8}+1=\pm9\)
Mà vế trái >0 nên \(2\sqrt{x^2-7x+8}+1=9\)
\(\Leftrightarrow\sqrt{x^2-7x+8}=\frac{9-1}{2}=4\)
\(\Leftrightarrow x^2-7x+8=16\)
\(\Leftrightarrow x^2-7x-8=0\Leftrightarrow\left(x-8\right)\left(x+1\right)=0\Leftrightarrow\orbr{\begin{cases}x=8\\x=-1\end{cases}}\)