1, Rút gọn biểu thức :\(P=\frac{x+2}{x\sqrt{x}-1}+\frac{\sqrt{x}+1}{x+\sqrt{x}+1}-\frac{\sqrt{x}+}{x-1}\left(x\ge0;x\ne1\right)\)
2, Cho \(a^2-4a+1=0\) . Tính giá trị biểu thức \(P=\frac{a^4+a^2+1}{a^2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{x+\sqrt{x}+1}{\sqrt{x}+1}ĐKXĐ:x\ge0\)
\(\Rightarrow A=\frac{2+\sqrt{2}+1}{\sqrt{2}+1}=\frac{3+\sqrt{2}}{1+\sqrt{2}}=2\sqrt{2}-1\)
\(B=\frac{1}{\sqrt{x}-1}-\frac{x+2}{x\sqrt{x}-1}-\frac{\sqrt{x}+1}{x+\sqrt{x}+1}\)
\(=\frac{x+\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}-\frac{x+2}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}-\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)
\(=\frac{x+\sqrt{x}+1-x-2-x+1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)
\(=\frac{\sqrt{x}-x}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)
\(=\frac{\left(1-\sqrt{x}\right)\sqrt{x}}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)
\(=\frac{-\sqrt{x}}{x+\sqrt{x}+1}\)
\(C=-A.B=-\frac{x+\sqrt{x}+1}{\sqrt{x}+1}\cdot\frac{-\sqrt{x}}{x+\sqrt{x}+1}=\frac{\sqrt{x}}{\sqrt{x}+1}\)
\(=\frac{\sqrt{x}+1-1}{\sqrt{x}+1}=1-\frac{1}{\sqrt{x}+1}\)
\(ĐểC\in Z\Rightarrow\frac{1}{\sqrt{x}+1}\in Z\)
\(\Rightarrow\sqrt{x}+1\in\left\{1\right\}=\left\{1;-1\right\}\)
\(\Leftrightarrow x\in\left\{0\right\}\)
Kết hợp ĐKXĐ =>...
\(\frac{x}{x+yz}+\frac{y}{y+zx}+\frac{z}{z+xy}=\frac{x}{x\left(x+y+z\right)+yz}+\frac{y}{y\left(x+y+z\right)+zx}+\frac{z}{z\left(x+y+z\right)+xy}\)
\(=\text{Σ}\frac{x}{\left(x+y\right)\left(x+z\right)}=\frac{2\left(xy+yz+xz\right)}{\left(x+y\right)\left(y+z\right)\left(x+z\right)}\)(1)
+) CM bổ đề (cái này khá hữu dụng): \(\left(x+y+z\right)\left(xy+yz+xz\right)\ge3\sqrt[3]{xyz}\cdot3\sqrt[3]{x^2y^2z^2}=9xyz\Leftrightarrow\frac{1}{9}\left(x+y+z\right)\left(xy+yz+xz\right)\ge xyz\)
Có \(\left(x+y\right)\left(y+z\right)\left(x+z\right)=\left(x+y+z\right)\left(xy+yz+xz\right)-xyz\ge\frac{8}{9}\left(x+y+z\right)\left(xy+yz+xz\right)\)
Thay vào (1)-> DPCM
Dấu = xảy ra khi x=y=z=1/3
\(1,P=\frac{x+2}{x\sqrt{x}-1}+\frac{\sqrt{x}+1}{x+\sqrt{x}+1}-\frac{\sqrt{x}+1}{x-1}\)
\(=\frac{x+2}{x\sqrt{x}-1}+\frac{\sqrt{x}+1}{\left(x+\sqrt{x}+1\right)}-\frac{\sqrt{x}+1}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)
\(=\frac{x+2}{x\sqrt{x}-1}+\frac{\sqrt{x}+1}{\left(x+\sqrt{x}+1\right)}-\frac{1}{\sqrt{x}-1}\)
\(=\frac{x+2}{x\sqrt{x}-1}+\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\left(x+\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}-\frac{x+\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)
\(=\frac{x+2+x-1-x-\sqrt{x}-1}{x\sqrt{x}-1}\)
\(=\frac{x-\sqrt{x}}{x\sqrt{x}-1}\)
\(=\frac{\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)
\(=\frac{\sqrt{x}}{x+\sqrt{x}+1}\)