Giải phương trình :
\(2\left(x^2+2x+3\right)=5\sqrt{x^3+3x^2+3x+2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
xét x=0 thấy không là nghiệm
xét x khác 0; đặt x=a; \(\frac{x}{x-1}=b;=>\frac{1}{a}+\frac{1}{b}=1< =>a+b=ab.\)
a3+b3+3ab-2=0<=> (a+ b)[(a+b)2- 3ab] + 3ab - 2=0 <=> ab(a2b2- 3ab)+ 3ab- 2=0
<=> (ab)3- 3(ab)2 + 3ab - 2=0 <=> (ab- 1)3 -1 =0 <=> ab- 1 = 1 <=> ab= 2 <=> \(x.\frac{x}{x-1}=2< =>x^2=2x-2< =>x^2-2x+2=0\)(vô nghiệm)
vậy pt vô nghiệm
\(đk:x\ge\frac{-3}{2}\)
\(\sqrt{8x+13+4\sqrt{2x+3}}+\sqrt{2x+7-4\sqrt{2x+3}}=9\)
\(\Leftrightarrow\sqrt{4\left(2x+3\right)+4\sqrt{2x+3}+1}+\sqrt{2x+3-4\sqrt{2x+3}+4}=9\)
\(\Leftrightarrow\sqrt{\left(2\sqrt{2x+3}+1\right)^2}+\sqrt{\left(\sqrt{2x+3}+2\right)^2}=9\)
\(\Leftrightarrow|2\sqrt{2x+3}+1|+|\sqrt{2x+3}+2|=9\Leftrightarrow3\sqrt{2x+3}=6\Leftrightarrow\sqrt{2x+3}=2\Leftrightarrow2x+3=4\)
\(\Leftrightarrow x=\frac{1}{2}\left(\text{thỏa mãn}\right)\)
đkxđ: ....
\(\sqrt{x+4}+\sqrt{x+11}=x+27-x^2\)
\(\Leftrightarrow x+4+2\sqrt{\left(x+4\right)\left(x+11\right)}+x+1=x^2+729+x^4+54x-2x^3-54x^2\)
\(\Leftrightarrow2x+5+2\sqrt{\left(x+4\right)\left(x+11\right)}=x^4-2x^3-53x^2+54x+729\)
\(\Leftrightarrow2\sqrt{x^2+15x+44}=x^4-2x^3-53x^2+52x+724\)
\(\Leftrightarrow2\sqrt{x^2+15x+44}=\left(x-2\right)\left(x^3-53x-54\right)+616\)
.........
\(\left(\frac{x\sqrt{x}+y\sqrt{y}}{\sqrt{x}+\sqrt{y}}-\sqrt{xy}\right)\cdot\frac{1}{x-y}+\frac{2\sqrt{y}}{\sqrt{x}+\sqrt{y}}\)
\(=\left(\frac{\left(\sqrt{x}+\sqrt{y}\right)\left(x-\sqrt{xy}+y\right)}{\sqrt{x}+\sqrt{y}}-\sqrt{xy}\right)\cdot\frac{1}{x-y}+\frac{2\sqrt{y}}{\sqrt{x}+\sqrt{y}}\)
\(=\left(x-\sqrt{xy}+y-\sqrt{xy}\right)\cdot\frac{1}{x-y}+\frac{2\sqrt{y}}{\sqrt{x}+\sqrt{y}}\)
\(=\left(x-2\sqrt{xy}+y\right)\cdot\frac{1}{\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}-\sqrt{y}\right)}+\frac{2\sqrt{y}}{\sqrt{x}+\sqrt{y}}\)
\(=\left(\sqrt{x}-\sqrt{y}\right)^2\cdot\frac{1}{\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}-\sqrt{y}\right)}+\frac{2\sqrt{y}}{\sqrt{x}+\sqrt{y}}\)
\(=\frac{\sqrt{x}-\sqrt{y}}{\sqrt{x}+\sqrt{y}}+\frac{2\sqrt{y}}{\sqrt{x}+\sqrt{y}}\)
\(=\frac{\sqrt{x}-\sqrt{y}+2\sqrt{y}}{\sqrt{x}+\sqrt{y}}\)
\(=\frac{\sqrt{x}+\sqrt{y}}{\sqrt{x}+\sqrt{y}}\)
\(=1\)