x2 -2x-7+3\(\sqrt{\left(x+1\right)\left(x-3\right)}\)=0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
PT
\(log2^{x^2-x}+log3^{x^2-x}=log2.5^{x^2-x}\)
\(\Leftrightarrow x^2-xlog2+x^2-xlog3=2\left(x^2-x\right)log5\)
\(\Leftrightarrow\left(x^2-x\right)\left(log2+log3-2log5\right)=0\)
\(\Leftrightarrow x^2-x=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=1\end{cases}}\)
Vay nghiem cua PT la \(x=0\)va \(x=1\)
\(\frac{1}{2}\sqrt{72}+\frac{3}{4}\sqrt{48}+\sqrt{162}-\)\(\sqrt{75}\)
\(=\frac{1}{2}.6\sqrt{2}+\frac{3}{4}.4\sqrt{3}+9\sqrt{2}-5\sqrt{3}\)
\(=3\sqrt{2}+3\sqrt{3}+9\sqrt{2}-5\sqrt{3}\)
\(=12\sqrt{2}-2\sqrt{3}\)
Trước \(\sqrt{75}\)là dấu " - " hay dấu " -- " vậy? Nếu là dấu " -- " thì \(--\sqrt{75}\Rightarrow+\sqrt{75}\)nha
đề sai rồi nha:
\(x^3+y^3+z^3\ge3xyz\)
Bài này mk nghĩ bn nên cauchy 3 số
Mình viết nhầm bài là:
Rút gọn biểu thức: \(A = {{12} \over√3+√2+√5}\)
PT
\(\Leftrightarrow\left(x+1\right)\left(x-1\right)\left(x+3\right)\left(x+5\right)=m\)
\(\Leftrightarrow\left(x^2+4x+3\right)\left(x^2+4x-5\right)=m\)
\(\Leftrightarrow\left(x^2+4x-1+4\right)\left(x^2+4x-1-4\right)=m\)
\(\Leftrightarrow\left(x^2+4x-1\right)^2-16=m\)
\(\Leftrightarrow\left(x^2+4x-1\right)^2=m+16\) \(\left(DK:m\ge-16\right)\)
\(\Leftrightarrow\orbr{\begin{cases}x^2+4x-1=\sqrt{m+16}\left(1\right)\\x^2+4x-1=-\sqrt{m+16}\left(2\right)\end{cases}}\)
PT(1)
\(\Leftrightarrow x^2+4x-1-\sqrt{m+16}=0\)
Ta co:
\(\Delta^`=2^2-1.\left(-1-\sqrt{m+16}\right)=5+\sqrt{m+16}>0\)
\(\Rightarrow\hept{\begin{cases}x_1=-2+\sqrt{5+\sqrt{m+16}}\\x_2=-2-\sqrt{5+\sqrt{m+16}}\end{cases}}\)
PT(2)
\(\Leftrightarrow x^2+4x-1+\sqrt{m+16}=0\)
Ta lai co:
\(\Delta^`=2^2-1.\left(-1+\sqrt{m+16}\right)=5-\sqrt{m+16}\)
De PT co 4 nghiem phan biet thi PT(1) va PT(2) co 2 nghiem phan bet
Suy ra PT(2) co 2 nghiem phan biet khi
\(5-\sqrt{m+16}>0\)
\(\Leftrightarrow m< 9\)
\(\Rightarrow\hept{\begin{cases}x_3=-2+\sqrt{5-\sqrt{m+16}}\\x_4=-2-\sqrt{5-\sqrt{m+16}}\end{cases}}\)
Ta lai co:
\(\frac{1}{x_1}+\frac{1}{x_2}+\frac{1}{x_4}+\frac{1}{x_5}=\frac{x_1+x_2}{x_1x_2}+\frac{x_4+x_5}{x_4x_5}=\frac{4}{1+\sqrt{m+16}}+\frac{4}{1-\sqrt{m+16}}\text{ }=-\frac{8}{15+m}\)\(\left(DK:m\ne-15\right)\)
Ma \(\frac{1}{x_1}+\frac{1}{x_2}+\frac{1}{x_3}+\frac{1}{x_4}=-1\)
\(\Leftrightarrow-\frac{8}{m+15}=-1\)
\(\Leftrightarrow m=-7\)
Vay de PT \(\left(x^2-1\right)\left(x+3\right)\left(x+5\right)=m\)co 4 gnhiem phan biet thoa man
\(\frac{1}{x_1}+\frac{1}{x_2}+\frac{1}{x_3}+\frac{1}{x_4}=-1\)thi m=-7
a) Hình như đề bài phải là \(abc\ge\left(a+b-c\right)\left(a+c-b\right)\left(b+c-a\right)\)
Ta có: \(4a^2=\left[\left(a+b-c\right)+\left(a+c-b\right)\right]^2\ge4\left(a+b-c\right)\left(a+c-b\right)\)
\(\Leftrightarrow a^2\ge\left(a+b-c\right)\left(a+c-b\right)\)
Tương tự, nhân vế với vế -> dpcm
b) Ta có a + b + c = 2:))
Theo nguyên lí Dirichlet trong 3 số \(a-\frac{2}{3};b-\frac{2}{3};c-\frac{2}{3}\) luôn tồn tại 2 số đồng dấu. Giả sử đó là \(a-\frac{2}{3};b-\frac{2}{3}\).
Ta có: \(\left(a-\frac{2}{3}\right)\left(b-\frac{2}{3}\right)\ge0\Leftrightarrow2abc\ge\frac{4}{3}ac+\frac{4}{3}bc-\frac{8}{9}c\)
Do đó \(P\ge a^2+b^2+c^2+\frac{4}{3}c\left(a+b-\frac{2}{3}\right)\)
\(=\left(a+b\right)^2+c^2+\frac{4}{3}c\left(a+b+c-\frac{2}{3}-c\right)-2ab\)
\(\ge\left(2-c\right)^2+c^2+\frac{4}{3}c\left(\frac{4}{3}-c\right)-\frac{\left(a+b\right)^2}{2}\)
\(=\left(2-c\right)^2+c^2+\frac{4}{3}c\left(\frac{4}{3}-c\right)-\frac{\left(2-c\right)^2}{2}\)
\(=\frac{3c^2-4c+36}{18}=\frac{3\left(c-\frac{2}{3}\right)^2+\frac{104}{3}}{18}\ge\frac{52}{27}\)
Vậy....
P/s: Em ko chắc...Ban đầu định dồn biến nhưng thôi mệt lắm:P