K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 8

\(c,125\ge5^{n+1}>25\\ =>5^3\ge5^{n+1}>5^2\\ =>3\ge n+1>2\\ =>3-1\ge n>2-1\\ =>2\ge n>1\)

Mà n là số tự nhiên

=> n = 2

\(d,2\cdot16\ge2^n>4\\ =>2\cdot2^4\ge2^n>2^2\\ =>2^{1+4}\ge2^n>2^2\\ =>2^5\ge2^n>2^2\\ =>5\ge n>2\)

Mà n là số tự nhiên

=> n ∈ {3; 4; 5} 

7 tháng 8

Chiều rộng của căn phòng là:

`1/3 xx 12 = 4(m)`

Diện tích căn phòng là:

`12 x 4 = 48(m^2)` 

Đổi: 8dm = 0,8m 

Diện tích viên gạch là:

`0,8 xx 0,8 = 0,64(m^2)` 

Số viên gạch cần dùng là:

`48:0,64=75` (viên)

ĐS: ...

7 tháng 8

\(\left(a-x\right)y^3-\left(a-y\right)x^3+\left(x-y\right)a^3\\ =ay^3-xy^3-ax^3+x^3y+a^3x-a^3y\\ =\left(ay^3-ax^3\right)+\left(-xy^3+xy^3\right)+\left(a^3x-a^3y\right)\\ =a\left(y^3-x^3\right)+-xy\left(y^2-x^2\right)+a^3\left(x-y\right)\\ =a\left(y-x\right)\left(x^2+xy+y^2\right)-xy\left(y-x\right)\left(x+y\right)-a^3\left(y-x\right)\\ =\left(y-x\right)\left[a\left(x^2+xy+y^2\right)-xy\left(x+y\right)-a^3\right]\\ =\left(y-x\right)\left(ax^2+axy+ay^2-x^2y-xy^2-a^3\right)\)

7 tháng 8

\(125>5^{n+1}>25\\ \Rightarrow5^3>5^{n+1}>5^2\\ \Rightarrow3>n+1>2\\ \Rightarrow3-1>n>2-1\\ \Rightarrow2>n>1\)

Mà giữa 2 và 3 không có số tự nhiên nào 

=> Không có n thỏa mãn 

7 tháng 8

\(x^3-5x^2+8x-4\\ =\left(x^3-x^2\right)+\left(-4x^2+4x\right)+\left(4x-4\right)\\ =x^2\left(x-1\right)-4x\left(x-1\right)+4\left(x-1\right)\\ =\left(x^2-4x+4\right)\left(x-1\right)\\ =\left[x^2-2\cdot x\cdot2+2^2\right]\left(x-1\right)\\ =\left(x-2\right)^2\left(x-1\right)\)

a: Ta có: BH\(\perp\)AC

CK\(\perp\)AC

Do đó: BH//CK

Ta có: CH\(\perp\)AB

BK\(\perp\)BA

Do đó: CH//BK

Xét tứ giác BHCK có

BH//CK

BK//CH

Do đó: BHCK là hình bình hành

b: BHCK là hình bình hành

=>BC cắt HK tại trung điểm của mỗi đường

mà M là trung điểm của BC

nên M là trung điểm của HK

=>H,M,K thẳng hàng

c: Xét ΔHIK có

G,M lần lượt là trung điểm của HI,HK

=>GM là đường trung bình của ΔHIK

=>GM//IK

=>BC//IK

Xét ΔCHI có

CG là đường cao

CG là đường trung tuyến

Do đó: ΔCHI cân tại C

=>CH=CI

mà CH=BK

nên BK=CI

Xét tứ giác BCKI có BC//KI và BK=CI

nên BCKI là hình thang cân

7 tháng 8

\(x^3-x^2-14x+24\\ =\left(x^3-2x^2\right)+\left(x^2-2x\right)+\left(-12x+24\right)\\ =x^2\left(x-2\right)+x\left(x-2\right)-12\left(x-2\right)\\ =\left(x-2\right)\left(x^2+x-12\right)\\ =\left(x-2\right)\left[\left(x^2-3x\right)+\left(4x-12\right)\right]\\ =\left(x-2\right)\left[x\left(x-3\right)+4\left(x-3\right)\right]\\ =\left(x-2\right)\left(x-3\right)\left(x+4\right)\)

7 tháng 8

\(a,M=\left(x+1\right)^3-x^3+1-3x\left(x+1\right)\\ =x^3+3x^2+3x+1-x^3+1-3x^2-3x\\ =\left(x^3-x^3\right)+\left(3x^2-3x^2\right)+\left(3x-3x\right)+\left(1+1\right)\\ =2\)

Vậy giá trị của bt không phụ thuộc vào biến 

\(b,\left(2x-1\right)^3-6x\left(2x-1\right)^2+12x^2\left(2x-1\right)-8x^3\\ =\left(2x-1\right)^3-3\cdot\left(2x-1\right)^2\cdot2x+3\cdot\left(2x-1\right)\cdot\left(2x\right)^2-\left(2x\right)^3\\ =\left(2x-1-2x\right)^3\\ =\left(-1\right)^3=-1\)

Vậy giá trị của bt không phụ thuộc vào biến 

\(c,P=\left(x+y+1\right)^3-\left(x+y-1\right)^3-6\left(x+y\right)^2\\ =\left(x+y+1-x-y+1\right)\left[\left(x+y+1\right)^2+\left(x+y+1\right)\left(x+y-1\right)+\left(x+y-1\right)^2\right]-6\left(x+y\right)^2\\ =2\left[\left(x+y\right)^2+2\left(x+1\right)+1+\left(x+y\right)^2-1+\left(x+y\right)^2-2\left(x+y\right)+1\right]-6\left(x+y\right)^2\\ =2\left[3\left(x+y\right)^2+1\right]-6\left(x+y\right)^2\\ =6\left(x+y\right)^2+2-6\left(x+y\right)^2\\ =2\)

Vậy giá trị của bt không phụ thuộc vào biến  

7 tháng 8

\(a\left(b^2+c^2\right)+b\left(c^2+a^2\right)+c\left(a^2+b^2\right)+3ab\\ =ab^2+ac^2+bc^2+ba^2+ca^2+cb^2+3abc\\ =\left(a^2b+ab^2+abc\right)+\left(bc^2+b^2c+abc\right)+\left(ca^2+ac^2+abc\right)\\ =ab\left(a+b+c\right)+bc\left(a+b+c\right)+ca\left(a+b+c\right)\\ =\left(a+b+c\right)\left(ab+bc+ca\right)\)

7 tháng 8

Ta có:

A = 2004 x 2006

= (2005 - 1) x (2005 + 1) 

= 2005 x 2005 - 2005 + 2005 - 1 

= 2005 x 2005 + 0 - 1

= 2005 x 2005 - 1 

=> A < 2005 x 2005 

=> A < B