Tìm giá trị nhỏ nhất của A biết A= √x^2+4x+4 +√x^2-4x+4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


\(\left[\left(a^2-2a\right).\left(b^2+6b\right)\right]+12\left(a^2-2a\right)+3\left(b^2+6b\right)+36\)(1)
Em đặt: \(A=a^2-2a\)và \(B=b^2+6b\)
(1) Trở thành:
\(AB+12A+3B+36=A\left(B+12\right)+3\left(B+12\right)=\left(A+3\right)\left(B+12\right)\)
\(=\left(a^2-2a+3\right)\left(b^2+6b+12\right)=\left[\left(a-1\right)^2+2\right]\left[\left(b+3\right)^2+3\right]>0\)

\(A^2=2\left(x^2+1\right)+2\sqrt{\left(x^2+1\right)^2-x^2}.\)
\(=2\left(x^2+1\right)+2\sqrt{x^4+x^2+1}\)
Vì \(x^2\ge0\)\(\Rightarrow A^2\ge2+2=4\)\(\Rightarrow A\ge2\)
Dấu "=" xảy ra khi x=0

Điều kiện: \(x,y\le\frac{1}{2}\Rightarrow2xy\le\frac{1}{2}\)
Ta có:
\(\left(\frac{1}{\sqrt{1+2x^2}}+\frac{1}{\sqrt{1+2y^2}}\right)^2\le2\left(\frac{1}{1+2x^2}+\frac{1}{1+2y^2}\right)\)
\(\le\frac{4}{1+2xy}\)
\(\Rightarrow x=y\)
Làm nốt

Sửa đề:
\(\hept{\begin{cases}3x+10\sqrt{xy}-y=12\left(1\right)\\4x+\frac{24\left(x^3+y^3\right)}{x^2+xy+y^2}-4\sqrt{2\left(x^2+y^2\right)}\ge12\left(2\right)\end{cases}}\)
Điều kiện: \(xy\ge0\)
Xét \(x,y\le0\)
\(4x+\frac{24\left(x^3+y^3\right)}{x^2+xy+y^2}-4\sqrt{2\left(x^2+y^2\right)}\ge0\)(loại)
Xét \(x,y\ge0\)
\(\left(2\right)-\left(1\right)\Leftrightarrow\left(x+y\right)+\frac{24\left(x+y\right)\left(x^2-xy+y^2\right)}{x^2+xy+y^2}-4\sqrt{2\left(x^2+y^2\right)}-10\sqrt{xy}\ge0\)
Ta có:
\(VT\le\left(x+y\right)+8\left(x+y\right)-4\left(x+y\right)-5\left(x+y\right)=0\)
\(\Rightarrow x=y\)
Làm tiếp
Câu trên sai rồi nha đọc cái này nè.
\(\hept{\begin{cases}3x+10\sqrt{xy}-y=12\left(1\right)\\x+\frac{6\left(x^3+y^3\right)}{x^2+xy+y^2}-\sqrt{2\left(x^2+y^2\right)}\le3\left(2\right)\end{cases}}\)
Điều kiện: \(xy\ge0\)
Xét \(x,y\le0\)
\(x+\frac{6\left(x^3+y^3\right)}{x^2+xy+y^2}-\sqrt{2\left(x^2+y^2\right)}\le3\)(đúng)
Xét \(x,y\ge0\)
Ta có:
\(x+\frac{6\left(x^3+y^3\right)}{x^2+xy+y^2}-\sqrt{2\left(x^2+y^2\right)}\ge x+\frac{4\left(x^3+y^3\right)}{x^2+y^2}-\sqrt{2\left(x^2+y^2\right)}\)
\(\ge x+2\sqrt{2\left(x^2+y^2\right)}-\sqrt{2\left(x^2+y^2\right)}=x+\sqrt{2\left(x^2+y^2\right)}\ge x+x+y=2x+y\)
\(\Rightarrow3\ge2x+y\left(3\right)\)
Ta có:
\(3x+10\sqrt{xy}-y=12\)
\(VT\le3x+5\left(x+y\right)-y=8x+4y\)
\(\Rightarrow12\le8x+4y\)
\(\Leftrightarrow3\le2x+y\left(4\right)\)
Từ (3) và (4) \(\Rightarrow x=y\)
Làm nốt


E2 = 8+căn(2-x)(x+6)
+) vì căn (2-x)(x+6) >=
=> E2 >= 8
với đk -6<=x<=2 thì E luôn dương( câu này viết gọn thành E>= 0)
=> E>= căn 8=2 căn 2
=> Min E = 2 căn 2 khi x=-6 hoặc x=2
+)E2 = 8+căn( -x2 -4x+12)
E2=8 +căn(-x2-4x-4 + 16) = 8+căn(-(x+2)2 + 16) <= 8 + căn 16 = 8+4 = 12 ( vì -(x+2)2 <= 0 V x)
=>E<= căn12 = 2 căn 3
=> Max E = 2 căn 3 khi x=-2
học tốt
a sorry
phần max nha
E2 <= 8 + 2 căn 16 = 8+8=16
E>0 =>0< E<=4
=> MaxE = 4 khi x=-2
xin lỗi nhiều
học tốt

bạn lm ra 2 hướng
hướng 1 ) liên hợp với (x - căn (x2+2019)) ( nhân vào 2 vế)
biến đổi nhân ra => ....(1)
hướng 2) liên hợp với (y-căn (y2 + 2019)) ( nhân vào 2 vế)
biến đổi nhân ra=>....(2)
từ (1) và (2) => x=-y hay x=y gì đó
r tính A
cái này mình có lm r , khổ cái web ko cho up ảnh lên , bn chịu khó lm cho quen nha
học tốt
ôi trời ơi ai cứ đi spam dis thế
mik có lm j sai đâu , web không cho up ảnh , bài dài chịu thôi

Áp dụng bđt Bunhiacopski ta có
\(\sqrt{c}.\sqrt{a-c}+\sqrt{c}.\sqrt{b-c}\le\sqrt{\left(\sqrt{c}\right)^2+\left(\sqrt{b-c}\right)^2}+\sqrt{\left(\sqrt{c}\right)^2+\left(\sqrt{a-c}\right)^2}.\)
\(\Leftrightarrow\sqrt{c\left(a-c\right)}+\sqrt{c\left(b-c\right)}\le\sqrt{c+b-c}.\sqrt{c+a-c}=\sqrt{ab}\left(đpcm\right)\)
Bu-nhi-a-cốp-ski: (ab+cd)2 \(\le\)( a2 + c2 )( b2 + d2 ) mà bạn.
Gợi ý:
\(A=\left|x+2\right|+\left|x-2\right|=\left|x+2\right|+\left|2-x\right|\ge\left|x+2+2-x\right|=4\)
"=" xảy ra <=> ( x+ 2 ) ( x- 2 ) \(\le0\)<=> \(-2\le x\le2\)