Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải :
Lấy K là trung điểm của AC
=> MK //AB; MK =AB/2
Xét tam giác ADB và tam giác CKM có:
AB = MC \(\left(=\frac{BC}{2}\right)\)
Góc ABD = góc CMK (đồng vị , MK//AB)
BD = MK \(\left(=\frac{AB}{2}\right)\)
=> tam giác ABD = tam giác CKM (c.g.c)
=> AD = CK mà AC = 2.CK
=>AC = 2.AD
Quy những số này thành những số ko có mũ. Và tính nó như tính số tự nhiên
a) -3/20 + -4/20 = -7/20
b) 1/20 - 8/20 = -7/20
học tốt, nhớ cố gắng
\(\text{Ta có:}\frac{a}{b}< \frac{c}{d}\Rightarrow\frac{a}{b}.\frac{d}{c}< \frac{c}{d}.\frac{d}{c}\)
\(\Rightarrow\frac{ad}{bc}< \frac{cd}{dc}\)
\(\Rightarrow\frac{ad}{bc}< 1\)
\(\Rightarrow ad< 1.bc\)
\(\Rightarrow ad< bc\)
\(\cdot\text{Từ }ad< bc\Rightarrow ad+ab< bc+ab\)
\(\Rightarrow a.\left(b+d\right)< b.\left(a+c\right)\)
\(\Rightarrow\frac{a}{b}< \frac{a+c}{b+d}\left(1\right)\)
\(\cdot\text{Từ }ad< bc\Rightarrow ad+cd< bc+cd\)
\(\Rightarrow d.\left(a+c\right)< c.\left(b+d\right)\)
\(\Rightarrow\frac{a+c}{b+d}< \frac{c}{d}\left(2\right)\)
\(\text{Từ (1) và (2)}\Rightarrow\frac{a}{c}< \frac{a+c}{b+d}< \frac{c}{d}\left(đpcm\right)\)
Trả lời:
a, P(x) = - 3x2 + 3x - ( - 4x3 ) + 5 - (- 2x4 ) - x + 1
= - 3x2 + 3x + 4x3 + 5 + 2x4 - x + 1
= 2x4 + 4x3 - 3x2 + 2x + 6
Q(x) = 5x4 + 19x2 + 4x3 - ( - 6x ) - 12 - x2 - ( - 1 )
= 5x4 + 19x2 + 4x3 + 6x - 12 - x2 + 1
= 5x4 + 4x3 + 18x2 + 6x + 1
b, P(x) + Q(x) = 2x4 + 4x3 - 3x2 + 2x + 6 + 5x4 + 4x3 + 18x2 + 6x + 1
= 7x4 + 8x3 + 15x2 + 8x + 7
c, P(x) - Q(x) = 2x4 + 4x3 - 3x2 + 2x + 6 - ( 5x4 + 4x3 + 18x2 + 6x + 1 )
= 2x4 + 4x3 - 3x2 + 2x + 6 - 5x4 - 4x3 - 18x2 - 6x - 1
= - 3x4 - 21x3 - 4x + 5