cho góc bẹt xOy, trên nửa mặt phẳng bờ chứa xy, vẽ góc xOa bằng 45°, góc aOb bằng 75°. Tính góc yOb, góc yOa và góc xOb.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(S=\dfrac{1}{2^2}\left(1+\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{50^2}\right)\)
Đặt \(A=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{50^2}\)
\(\Rightarrow A< \dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{49.50}\)
\(A< \dfrac{2-1}{1.2}+\dfrac{3-2}{2.3}+\dfrac{4-3}{3.4}+...+\dfrac{50-49}{49.50}\)
\(A< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+..+\dfrac{1}{49}-\dfrac{1}{50}\)
\(A< 1-\dfrac{1}{50}\Rightarrow A< 1\)
Ta có \(S=\dfrac{1}{2^2}\left(1+A\right)\)
Ta có
\(A< 1\Rightarrow1+A< 2\Rightarrow S< \dfrac{1}{2^2}.2=\dfrac{1}{2}\)
\(b=3.10^{100}+10^{99}+8=3.10^{100}+999...9+9⋮3\)
\(b=3.10^{100}+10^{99}+8⋮8\)
b đồng thời chia hết cho 3 và 8
3 và 8 nguyên tố cùng nhau và 3x8=24
=> b chia hết cho 24
\(\dfrac{2}{3}.5\)=\(\dfrac{10}{3}\)
\(x=\dfrac{10}{3}\)
\(\dfrac{x}{5}\)=\(\dfrac{2}{3}\)
=>.(x.3)=5.2
=>(5.2)-3
=> 10-8=2