giải phương trình :
\(\frac{1}{x^2}+\sqrt{x+2}=\frac{1}{x}+\sqrt{2x+1}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ: \(x\ge-2\)
PT\(\Leftrightarrow\left(x-\sqrt{x+2}-1\right)\left(3x+\sqrt{x+2}-1\right)=0\)
Done! (đừng hỏi tại sao em có ý tưởng phân tích "hay + trâu" vậy nhé:)))
chị biết làm r
phân tích kiểu của em khó làm đấy
bđt \(\Leftrightarrow\)\(\Sigma_{cyc}\frac{a^2+ab+ca}{\left(b+c\right)^2}\ge\frac{9}{4}\)
Có: \(\frac{a^2+ab+ca}{\left(b+c\right)^2}=\frac{a^2+ab+bc+ca}{\left(b+c\right)^2}-\frac{bc}{\left(b+c\right)^2}\ge\frac{\left(a+b\right)\left(c+a\right)}{\left(b+c\right)^2}-\frac{1}{4}\)
=> \(\Sigma_{cyc}\frac{a^2+ab+ca}{\left(b+c\right)^2}\ge3\sqrt[3]{\frac{\left[\left(a+b\right)\left(b+c\right)\left(c+a\right)\right]^2}{\left(a+b\right)^2\left(b+c\right)^2\left(c+a\right)^2}}-\frac{3}{4}=\frac{9}{4}\)
đề sai ở mẫu cuối nhé
đặt b + c - a = x ; a + c - b = y ; a + b - c = z
\(\Rightarrow a=\frac{y+z}{2};b=\frac{x+z}{2};c=\frac{x+y}{2}\)
\(\Rightarrow P=\frac{2\left(y+z\right)}{x}+\frac{9\left(x+z\right)}{2y}+\frac{8\left(x+y\right)}{z}=\frac{2y}{x}+\frac{9x}{2y}+\frac{2z}{x}+\frac{8x}{z}+\frac{9z}{2y}+\frac{8y}{z}\)
\(\ge6+8+12=26\)
Ta có :
\(\frac{1+\sqrt{1+x^2}}{x}=\frac{2+\sqrt{4\left(1+x^2\right)}}{2x}\le\frac{2+\frac{4+1+x^2}{2}}{2x}=\frac{9+x^2}{4x}\)
tương tự : \(\frac{1+\sqrt{1+y^2}}{y}\le\frac{9+y^2}{4y}\); \(\frac{1+\sqrt{1+z^2}}{z}\le\frac{9+z^2}{4z}\)
\(\Rightarrow\frac{1+\sqrt{1+x^2}}{x}+\frac{1+\sqrt{1+y^2}}{y}+\frac{1+\sqrt{1+z^2}}{z}\le\frac{\left(9+x^2\right)yz+\left(9+y^2\right)xz+\left(9+z^2\right)xy}{4xyz}\)
\(=\frac{9\left(xy+yz+xz\right)+xyz\left(x+y+z\right)}{4xyz}\le\frac{9\frac{\left(x+y+z\right)^2}{3}+\left(xyz\right)^2}{4xyz}=\frac{4\left(xyz\right)^2}{4xyz}=xyz\)
Dấu " = " xảy ra khi x = y = z = \(\sqrt{3}\)
Áp dụng bất đẳng thức Cauchy - Schwarz
\(3=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\Rightarrow a+b+c\ge3\)
Và
\(VT^2=\left(\sqrt{5a+4}+\sqrt{5b+4}+\sqrt{5c+4}\right)^2\)
\(\le\left(5a+4+5b+4+5c+4\right)\left(1+1+1\right)\)
\(\Leftrightarrow VT^2\le15\left(a+b+c\right)+36\)
Mà \(3\le a+b+c\left(cmt\right)\)
\(\Rightarrow VT^2\le15\left(a+b+c\right)+12\left(a+b+c\right)=27\left(a+b+c\right)\)
\(\Rightarrow VT\le3\sqrt{3\left(a+b+c\right)}\)
Ta có đpcm
Dấu " = " xảy ra khi \(a=b=c=1\)
đây là phương trình hay hệ phương trình
\(ĐK:x\ge\frac{-1}{2}\)
\(PT\Leftrightarrow x^2+\sqrt{x+2}=x+\sqrt{2x+1}\)
\(\Leftrightarrow x\left(x-1\right)=\sqrt{2x+1}-\sqrt{x+2}\)
\(\Leftrightarrow x\left(x-1\right)=\frac{x-1}{\sqrt{2x+1}+\sqrt{x+2}}\)
\(\Leftrightarrow\left(x-1\right)\left[x-\frac{1}{\sqrt{2x+1}+\sqrt{x+2}}\right]=0\)
\(\Rightarrow x=1\)
Vậy......