A(1;2) . B(-1,5;-3) . CMR đoạn thẳng AB đi qua gốc toạ độ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
xạo chóa quá e ! lớp 9 j chứ , cái này lớp 7
Câu hỏi của Nguyễn Trần Duy Thiệu - Toán lớp 8 | Học trực tuyến
vào thống kê
hc tốt
Xét với n=3k+r(k,rϵN;0≤r≤2)
Đặt A
Ta có: A=2^n−1=2^3k+r−1=2^r.8^k−1=2^r(8^k−1)+2^r−1≡2^r−1(mod7)
A⋮8<=>2^r−1⋮8
Với: r=0⇒2^r−1=0⋮8
r=1⇒2^r−1=1≡1(mod8)
r=2⇒2^r−1=3≡3(mod7)
→ Với n=3k(kϵN thì A⋮7)
Xét \(x,y,z\ne0\)ta có:
\(x^2+y^2+z^2\ge\frac{\left(x+y+z\right)^2}{3}< \left(x+y+z\right)^2\)(loại)
Xét trong 3 số có 2 số khác 0. Giả sử là \(x,y\ne0\)
\(x^2+y^2\ge\frac{\left(x+y\right)^2}{2}< \left(x+y\right)^2\)(loại)
Vậy trong 3 số x, y, z phải có ít nhất 2 số bằng 0. Thế vô ta được phương trình có vô số nghiệm nguyên.
Ý làm lộn. Đừng coi cái trên nha:
Dễ thấy với 2 trong 3 số bằng 0 thì phương trình có vô số nghiệm.
Giả sử 2 số đó là; x = y = 0 thì ta có:
\(z^2=z^2\) vô số nghiệm nguyên.
Vậy bài toán được chứng minh.
Gọi phương trình đường thẳng AB là y=ax+b.
Thay A(1;2) ta có 2=a+b (1)
Thay B(-1,5;-3) ta có -3=-1,5a+b (2)
Từ (1)(2)\(\Rightarrow\)a=2;b=0.Khi đó ptđt AB là y=-2x (*)
Vì A(1;2) nên A thuộc góc phần tư thứ II
B(-1,5;-3) nên B thuộc góc phần tư thứ IV
Do đó đoạn thẳng AB luôn đi qua góc phần tư thứ II và IV (**)
Từ (*)(**) ta có đoạn thẳng AB đi qua gốc tọa độ