a(b-c)(b+c−a)2 +c(a-b)(a+b−c)2(a+b−c)2 =b(a-c)(a+c-b) ²
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2x - | 6x - 7 | = -x + 8
* x > 0
Phương trình trở thành : 2x - 6x - 7 = -x + 8
<=> 2x - 6x + x = 8 + 7
<=> -3x = 15
<=> x = -5 ( không tmđk vì < 0 )
* x < 0
Phương trình trở thành : 2x - (-6x - 7) = -x + 8
<=> 2x + 6x + 7 = -x + 8
<=> 2x + 6x + x = 8 - 7
<=> 9x = 1
<=> x = 1/9 ( không tmđk vì > 0 )
Vậy phương trình vô nghiệm
Bài làm
~ Bài bạn Rin thiếu ngoặc khi xét biểu thức nếu vào phương trình đầu ~
*Nếu 6x - 7 > 0 <=> x > 7/6
----> | 6x - 7 | = 6x - 7
=> Phương trình: 2x - ( 6x - 7 ) = -x + 8
<=> 2x - 6x + 7 = -x + 8
<=> -4x + 7 + x - 8 = 0
<=> -3x - 1 = 0
<=> -3x = 1
<=> x = -1/3 ( Không thỏa mãn )
*Nếu 6x - 7 < 0 <=> x > 7/6
----> | 6x - 7 | = -( 6x - 7 ) = 7 - 6x
=> Phương trình: 2x - ( 7 - 6x ) = -x + 8
<=> 2x - 7 + 6x + x - 8 = 0
<=> 9x - 15 = 0
<=> x = 15/9 ( Thỏa mãn )
Vậy x = 15/9 là nghiệm phương trình.
1) \(21x^2+21y^2+z^2\)
\(=18\left(x^2+y^2\right)+z^2+3\left(x^2+y^2\right)\)
\(\ge9\left(x+y\right)^2+z^2+3.2xy\)
\(\ge2.3\left(x+y\right).z+6xy\)
\(=6\left(xy+yz+zx\right)=6.13=78\)
Dấu "=" xảy ra <=> x = y ; 3(x+y) = z; xy + yz + zx= 13 <=> x = y = 1; z= 6
2) \(x+y+z=3xyz\)
<=> \(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}=3\)
Đặt: \(\frac{1}{x}=a;\frac{1}{y}=b;\frac{1}{z}=c\)=> ab + bc + ca = 3
Ta cần chứng minh: \(3a^2+b^2+3c^2\ge6\)
Ta có: \(3a^2+b^2+3c^2=\left(a^2+c^2\right)+2\left(a^2+c^2\right)+b^2\)
\(\ge2ac+\left(a+c\right)^2+b^2\ge2ac+2\left(a+c\right).b=2\left(ac+ab+bc\right)=6\)
Vậy: \(\frac{3}{x^2}+\frac{1}{y^2}+\frac{3}{z^2}\ge6\)
Dấu "=" xảy ra <=> a = c = \(\sqrt{\frac{3}{5}}\); \(b=2\sqrt{\frac{3}{5}}\)
khi đó: \(x=z=\sqrt{\frac{5}{3}};y=\sqrt{\frac{5}{3}}\)
Gọi vận tốc đi từ A đến B là x ( km/h , x > 0 )
Vận tốc lúc về hơn vận tốc lúc đi là 5km/h => vận tốc lúc về = x + 5(km/h)
Đi từ A đến B với vận tốc x km/h => Thời gian đi = 60/x ( giờ )
Đi từ B về A với vận tốc x + 5 km/h => Thời gian đi = 60/x+5 ( giờ )
Thời gian về ít hơn thời gian đi 1 giờ
=> Ta có phương trình : \(\frac{60}{x}-\frac{60}{x+5}=1\)( 1 )
Phương trình ( 1 ) tương đương với phương trình
\(60\left(x+5\right)-60x=x\left(x+5\right)\)
<=> \(60x+300-60x=x^2+5x\)
<=> \(300=x^2+5x\)( * )
Giải phương trình ( * ) ta được x = 15 và x = -20
Vì x > 0 => x = 15
Vậy vận tốc lúc đi là 15km/h