Giúp mình được bài nào hay bài đấy :))
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(9^x=27^4.81\)
\(\Rightarrow\left(3^2\right)^x=\left(3^3\right)^4.3^4\)
\(\Rightarrow3^{2x}=3^{12}.3^4\)
\(\Rightarrow3^{2x}=3^{16}\)
\(\Rightarrow2x=16\)
\(\Rightarrow x=8\)
Vậy \(x=8\)
9 x = 27 4. 81
( 32 ) x = ( 33 ) 4. 34
3 2x = 312 . 34
3 2x = 316
2 x = 16
x = 8
Ta có:
\(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{49.50}\)
\(=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\)
\(=\frac{2-1}{1.2}+\frac{3-2}{2.3}+\frac{4-3}{3.4}+...+\frac{50-49}{49.50}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)
\(=1-\frac{1}{50}=\frac{49}{50}\)
Phương trình ban đầu tương đương với:
\(2x-\frac{49}{50}=7-\frac{1}{50}+x\)
\(\Leftrightarrow x=7-\frac{1}{50}+\frac{49}{50}=\frac{198}{25}\)
Đề là thế này \(2x-\frac{1}{2}-\frac{1}{6}-\frac{1}{12}-...-\frac{1}{49.50}=17-\frac{1}{50+x}\) đúng không em ??
\(2x-\frac{1}{2}-\frac{1}{6}-\frac{1}{12}-...-\frac{1}{49.50}=7-\frac{1}{50}+x\)
\(\Rightarrow x-\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{49.50}\right)=7-\frac{1}{50}\)
\(\Rightarrow x-\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\right)=7-\frac{1}{50}\)
\(\Rightarrow x-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\right)=7-\frac{1}{50}\)
\(\Rightarrow x-\left(1-\frac{1}{50}\right)=7-\frac{1}{50}\)
\(\Rightarrow x=7-\frac{1}{50}+\left(1-\frac{1}{50}\right)\)
\(\Rightarrow x=8-\frac{1}{25}\)
\(\Rightarrow x=\frac{199}{25}\)
Vậy \(x=\frac{199}{25}\)
\(BM=BA\Rightarrow\Delta BMA\)cân tại \(B\)nên \(\widehat{BMA}=\frac{180^o-\widehat{B}}{2}\).
Tương tự \(\widehat{CNA}=\frac{180^o-\widehat{C}}{2}\).
\(\widehat{MAN}+\widehat{AMN}+\widehat{ANM}=180^o\)
\(\Leftrightarrow\widehat{MAN}=180^o-\widehat{AMN}-\widehat{ANM}\)
\(=180^o-\frac{180^o-\widehat{B}}{2}-\frac{180^o-\widehat{C}}{2}\)
\(=\frac{\widehat{B}+\widehat{C}}{2}=45^o\)
Theo bài ra ta có:
2a-b=2/3(a+b)
=> 2a-b=2/3xa+2/3xb
=>2a-2/3xa=2/3xb+b
=>4/3xa=5/3xb
=>4a=5b
=>a/5=b/4
Đặt a/5=b/4=k (k\(\ne\)0)
=> a=5k ; b=4k
Thay a=5k; b=4k vào biểu thức M ta đc:
M=\(\frac{\left(^{5k}\right)^4+5^4}{\left(4k\right)^4+4^4}\)
M=\(\frac{5^4\left(k^4+1\right)}{4^4\left(k^4+1\right)}\)
M=\(\frac{5^4}{4^4}\)
M=\(\frac{625}{256}\)
Chúc học tốt và nhớ kết bạn với mình .
c)\(-\frac{1}{2000.1999}-\frac{1}{1999.1998}-\frac{1}{1998.1997}-...-\frac{1}{3.2}-\frac{1}{2.1}\)
\(=-\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{1997.1998}+\frac{1}{1998.1999}+\frac{1}{1999.2000}\right)\)
\(=-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{1997}-\frac{1}{1998}+\frac{1}{1998}-\frac{1}{1999}+\frac{1}{1999}-\frac{1}{2000}\right)\)
\(=-\left(1-\frac{1}{2000}\right)=-\frac{1999}{2000}\)
d)\(\frac{-1}{3}+\frac{-1}{15}+\frac{-1}{35}+\frac{-1}{63}+...+\frac{-1}{9999}\)
\(=-\left(\frac{1}{3}+\frac{1}{15}+\frac{1}{35}+\frac{1}{63}+...+\frac{1}{9999}\right)\)
\(=-\left(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+...+\frac{1}{99.101}\right)\)
\(=-\frac{1}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{99.101}\right)\)
\(=-\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{99}-\frac{1}{101}\right)\)
\(=-\frac{1}{2}\left(1-\frac{1}{101}\right)\)
\(=-\frac{1}{2}.\frac{100}{101}=-\frac{50}{101}\)