Cho x, y, z > 0 và x + y + z = 1. Chứng minh x + y > 16xyz
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Gọi vận tốc xe đi từ A là \(x\) \(\left(km/x>0\right)\)
vận tốc xe đi từ b là \(x+10\left(km/h\right)\)
Tổng vận tốc 2 xe là \(v=x+\left(x+10\right)=\frac{S}{t}=\frac{220}{2}=110\left(km/h\right)\)
\(\Leftrightarrow2x+10=110\)
\(\Leftrightarrow2x=100\)
\(\Leftrightarrow x=50\left(TM\right)\)
Vậy vận tốc xe đi từ A là \(50km/h\)
vận tốc xe đi từ B là \(50+10=60\left(km/h\right)\)
![](https://rs.olm.vn/images/avt/0.png?1311)
(x - 3)(x - 1) > 0
th1 :
x - 3 > 0 và x - 1 > 0
=> x > 3 và x > 1
=> x > 3
th2 :
x - 3 <0 và x - 1 < 0
=> x < 3 và x < 1
=> x < 1
vậy 1 < x < 3
(x-3)(x-1)>0
=> x-3; x-1 phải cùng dấu
TH1: \(\hept{\begin{cases}x-3>0\\x-1>0\end{cases}\Leftrightarrow\hept{\begin{cases}x>3\\x>1\end{cases}\Leftrightarrow}x>3}\)
TH2: \(\hept{\begin{cases}x-3< 0\\x-1< 0\end{cases}\Leftrightarrow\hept{\begin{cases}x< 3\\x< 1\end{cases}\Leftrightarrow}x< 1}\)
Vậy x>3 ;x<1 thì (x-3)(x-1)>0
![](https://rs.olm.vn/images/avt/0.png?1311)
a, Xét \(\Delta ABC\) có:
\(BC^2=\left(5a\right)^2=25a^2\)
\(AB^2+AC^2=\left(3a\right)^2+\left(4a\right)^2=9a^2+16a^2=25a^2\)
\(\Rightarrow BC^2=AB^2+AC^2\)
\(\Rightarrow\Delta ABC\) vuông tại A ( ĐL Pytago đảo )
Xét tứ giác \(AEHF\)có
\(\widehat{EAF}=90^0\left(cmt\right)\)
\(\widehat{AEH}=90^0\left(HE\perp AB\right)\)
\(\widehat{AFH}=90^0\left(HF\perp AC\right)\)
\(\Rightarrow AEHF\)là hình chữ nhật (DHNB)
b, Xét \(\Delta AHB\), \(\widehat{AHB}=90^0,HE\perp AB\left(gt\right)\)
\(\Rightarrow AH^2=AE.AB\)( Hệ thức lượng trong tam giác vuông ) (1)
Xét \(\Delta AHC\), \(\widehat{AHC}=90^0,HF\perp AC\left(gt\right)\)
\(\Rightarrow AH^2=AF.AC\)( Hệ thức lượng trong tam giác vuông ) (2)
Từ (1) (2) ta có \(AE.AB=AF.AC\)
\(\Leftrightarrow\frac{AE}{AC}=\frac{AF}{AB}\)
Xét \(\Delta AEF\) và \(\Delta ACB\)có
\(\widehat{A}\) chung
\(\frac{AE}{AC}=\frac{AF}{AB}\left(cmt\right)\)
\(\Rightarrow\Delta AEF\infty\Delta ACB\left(c-g-c\right)\)
c, Ta có \(EH\perp AB\), \(AC\perp AB\) \(\Rightarrow EH//AC\)(từ vuông góc đến song song)
\(FH\perp AC\), \(AB\perp AC\) \(\Rightarrow FH//AB\)(từ vuông góc đén song song)
-Xét ΔBEH vg tại E có EM là trung tuyến
=> \(ME=MH=MB=\frac{1}{2}BH\)
=> Δ MEH cân tại M
=> \(\widehat{MEH}=\widehat{MHE}\) mà \(\widehat{MHE}=\widehat{BCA}\) ( đồng vị - EH//AC)
=> \(\widehat{MEH}=\widehat{BCA}\) (1)
- Ta có: \(\widehat{HEF}=\widehat{HAF}\) (t/c HCN)
\(\widehat{HAF}+\widehat{BCA}=90^0\)
=> \(\widehat{HEF}+\widehat{BCA}=90^0\) (2)
Từ (1) và (2) =>\(\widehat{MEH}+\widehat{HEF}=90^0\) hay ME⊥EF (*)
+ Tương tự ta có: NF⊥EF (**)
Từ (*) và (**) => EM//FN => MEFN là hình thang
Mặt khác có: \(\widehat{MEF}=\widehat{EFN}=90^0\) (CMT)
=> MEFN là hình thang vuông( đpcm)
Ta có \(S_{EMNF}=\frac{1}{2}.\left(EM+FN\right).EF\)
Mà \(EM+FN=\frac{BH}{2}+\frac{CH}{2}=\frac{BH+CH}{2}=\frac{BC}{2}=\frac{5a}{2}=2,5a\)
Xét \(\Delta ABC\), \(\widehat{BAC}=90^0,AH\perp BC\)có
\(AB.AC=AH.BC\)( Hệ thức lượng trong tam giác vuông )
\(\Leftrightarrow AH=\frac{AB.AC}{BC}=\frac{3a.4a}{5a}=2,4a\)
\(\Rightarrow S_{EMNF}=\frac{1}{2}\times2,5a\times2,4a=3a^2\)
![](https://rs.olm.vn/images/avt/0.png?1311)
trong tam giác ABC có BC+AC<AB<BC-AC là sai vì theo bất đẳng thức trong tam giác sẽ là BC-AC<AB<BC+AC
![](https://rs.olm.vn/images/avt/0.png?1311)
ĐK: x khác 1 và - 1
\(\frac{x}{x-1}-\frac{2x+6}{x+1}=\frac{2}{x^2-1}\)
<=> \(\frac{x\left(x+1\right)}{x^2-1}-\frac{\left(2x+6\right)\left(x-1\right)}{x^2-1}=\frac{2}{x^2-1}\)
<=> \(x^2+x-\left(2x^2+6x-2x-6\right)=2\)
<=> \(-x^2-3x+4=0\)
<=> \(x^2+3x-4=0\)
<=> \(x^2-x+4x-4=0\)
<=> \(x\left(x-1\right)+4\left(x-1\right)=0\)
<=> \(\left(x-1\right)\left(x+4\right)=0\)
<=> x = 1 ( loại ) hoặc x = -4 thỏa mãn
<=> x = -4
Vậy x = -4.
\(\frac{x}{x-1}-\frac{2x+6}{x+1}=\frac{2}{x^2-1}\) ( đkxđ : \(x\ne\pm1\))
<=> \(\frac{x\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}-\frac{\left(2x+6\right)\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}=\frac{2}{\left(x-1\right)\left(x+1\right)}\)
<=> \(x^2+x-\left(2x^2-2x+6x-6\right)=2\)
<=> \(x^2+x-2x^2+2x-6x+6-2=0\)
<=> \(-x^2-3x+4=0\)
<=> \(\left(1-x\right)\left(x+4\right)=0\)
<=> 1 - x = 0 hoặc x + 4 = 0
<=> x = 1 ( loại vì k tmđk ) hoặc x = -4
Vậy x = -4
![](https://rs.olm.vn/images/avt/0.png?1311)
x2+5x-8=0
x(x+5)-8=0
x(x+5)=0+8
x(x+5)=-8
* x=-8
*x+5=-8 => x=-13
vậy...........................
toán 9 à bạn ? ^^
\(x^2+5x-8=0\)
Ta có : \(\Delta=5^2-4\left(-8\right)=25+32=57\)
do \(\Delta>0\)nên phương trình có 2 nghiệm phân biệt
\(x_1=\frac{-5+\sqrt{57}}{2}\)\(x_2=\frac{-5-\sqrt{57}}{2}\)
vậy ...