\(\frac{a+b}{2}\)\(\ge\)\(\frac{2}{\frac{1}{a}+\frac{1}{b}}\)\(\left(a,b>0\right)\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
a)
Xét \(\Delta\)HBA và \(\Delta\)HAC
có: ^BHA = ^AHC = 90 độ
^HBA = ^HAC ( cùng phụ ^HAB )
=> \(\Delta\)HBA ~ \(\Delta\)HAC
b) Ta có: \(BC=\sqrt{AB^2+AC^2}=10\)cm
=> \(S\left(ABC\right)=\frac{1}{2}AB.AC=\frac{1}{2}AH.BC\)
=> \(AH=\frac{6.8}{10}=4,8\)cm
c) Tích chất phân giác
=> \(\frac{AB}{BC}=\frac{AD}{DC}\Rightarrow\frac{AD}{6}=\frac{DC}{10}=\frac{AD+DC}{6+10}=\frac{8}{16}=\frac{1}{2}\)
=> AD = 3 cm; DC = 5 cm
Theo pi ta go trong \(\Delta\)ADB => \(BD=\sqrt{AB^2+AD^2}=\sqrt{6^2+3^2}=3\sqrt{5}\)
A B C D H
a) \(\Delta ABC\)vuông tại A \(\Rightarrow\widehat{ABC}+\widehat{C}=90^o\)
\(\Delta AHC\)vuông tại H \(\Rightarrow\widehat{HAC}+\widehat{C}=90^o\)
\(\Rightarrow\widehat{HAC}=\widehat{ABC}\)
Xét \(\Delta HBA\)và \(\Delta HAC\)có:+) \(\widehat{AHB}=\widehat{AHC}=90^o\)
+) \(\widehat{HAC}=\widehat{ABC}\)
\(\Rightarrow\Delta HBA~\Delta HAC\left(g-g\right)\)( đpcm )
b) \(\Delta ABC\)vuông tại A \(\Rightarrow AB^2+AC^2=BC^2\)( định lý Pytago )
\(\Rightarrow BC=\sqrt{AB^2+AC^2}=\sqrt{6^2+8^2}=10\)
Xét \(\Delta ABC\)có: \(S=\frac{1}{2}AB.AC=\frac{1}{2}AH.BC\)
\(\Rightarrow AB.AC=AH.BC\)\(\Rightarrow AH=\frac{AB.AC}{BC}=\frac{6.8}{10}=4,8\)
c) \(\Delta ABC\)có BD là phân giác \(\Rightarrow\frac{AB}{BC}=\frac{AD}{DC}=\frac{6}{10}=\frac{3}{5}\)
\(\Rightarrow\frac{AD}{3}=\frac{DC}{5}=\frac{AD+DC}{3+5}=\frac{AC}{8}=\frac{8}{8}=1\)
\(\Rightarrow DC=5.1=5\); \(AD=3.1=3\)
Xét \(\Delta ABD\)vuông tại A \(\Rightarrow AB^2+AD^2=BD^2\)( định lý Pytago )
\(\Rightarrow BD=\sqrt{AB^2+AD^2}=\sqrt{6^2+3^2}=\sqrt{54}=3\sqrt{6}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Đặt: b + c - a = x; a + b - c = y; a + c - b = z
khi đó: x + y + z = a + b + c
\(a=\frac{y+z}{2};b=\frac{z+x}{2};c=\frac{x+y}{2}\)
\(b-c=\frac{y-z}{2};c-a=\frac{z-x}{2};a-b=\frac{x-y}{2}\)
Ta cần chứng minh:
\(a\left(b-c\right)\left(b+c-a\right)^2+c\left(a-b\right)\left(a+b-c\right)^2=b\left(a-c\right)\left(a+c-b\right)^2\)(1)
<=> \(a\left(b-c\right)\left(b+c-a\right)^2+c\left(a-b\right)\left(a+b-c\right)^2+b\left(c-a\right)\left(a+c-b\right)^2=0\)
Hay mình cần chứng minh:
\(\frac{y+z}{2}.\frac{y-z}{2}.x^2+\frac{z+x}{2}.\frac{z-x}{2}.y^2+\frac{x+y}{2}.\frac{x-y}{2}.z^2=0\)
<=> \(\left(y^2-z^2\right)x^2+\left(z^2-x^2\right)y^2+\left(x^2-y^2\right)z^2=0\)
<=> \(0=0\)luôn đúng
Vậy (1) đúng
![](https://rs.olm.vn/images/avt/0.png?1311)
\(P=\frac{a}{a+1}+\frac{b}{b+1}+\frac{c}{c+1}\)
\(\Rightarrow3-P=\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}\)
\(\ge\frac{9}{a+b+c+3}=\frac{3}{2}\)
\(\Rightarrow P\le\frac{3}{2}\)
Đẳng thức xảy ra tại a=b=c=1/3
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\frac{x}{2\left(x-3\right)}+\frac{x}{2\left(x+1\right)}=\frac{2x}{\left(x+1\right)\left(x-3\right)}\)ĐK : \(x\ne3;-1\)
\(\frac{x\left(x+1\right)}{2\left(x-3\right)\left(x+1\right)}+\frac{2x\left(x-3\right)}{2\left(x+1\right)\left(x-3\right)}=\frac{4x}{2\left(x+1\right)\left(x-3\right)}\)
Khử mẫu ta đc : \(x^2+x+2x^2-6x=4x\)
\(3x^2-5x-4x=0\Leftrightarrow3x^2-9x=0\Leftrightarrow x\left(3x-9\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x=3\left(ktm\right)\end{cases}}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\left(x-4\right)\left(x-5\right)+\left(x-2\right)3=1\left(x-2\right)\left(x-5\right)\)
\(\Leftrightarrow x^2-5x-4x+20+3x-6=\left(x-2\right)\left(x-5\right)\)
\(\Leftrightarrow x^2-6x+14=x^2-5x-2x+10\)
\(\Leftrightarrow x^2-x^2-6x+5x+2x=10-14\)
\(\Leftrightarrow x=-4\)
Vậy \(x\in\left\{-4\right\}\)
( x - 4 )( x - 5 ) + ( x - 2 ).3 = 1( x - 2 )( x - 5 )
<=> x2 - 9x + 20 + 3x - 6 = x2 - 7x + 10
<=> x2 - 9x + 3x - x2 + 7x = 10 - 20 + 6
<=> x = -4
Vậy nghiệm của phương trình là S = { -4 }
![](https://rs.olm.vn/images/avt/0.png?1311)
\(A=\frac{4x^2-4x+1-3x^2}{x^2}=\left(\frac{2x-1}{x}\right)^2-3\ge-3\)
Dấu "=" xảy ra <=> x = 1/2
Vậy min A = -3 đạt tại x = 1/2
2x^2 – 7x + 3 = 0
Ta có: \(\frac{a+b}{2}\ge\frac{2}{\frac{1}{a}+\frac{1}{b}}\Leftrightarrow\frac{a+b}{2}\ge\frac{2}{\frac{a+b}{ab}}\)
\(\Leftrightarrow\frac{a+b}{2}\ge\frac{2ab}{a+b}\Leftrightarrow\left(a+b\right)^2\ge4ab\)
\(\Leftrightarrow a^2+2ab+b^2\ge4ab\Leftrightarrow\left(a-b\right)^2\ge0\)*đúng*
Đẳng thức xảy ra khi a = b