K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 11 2019

TL:    Ta có : a+b+c=1 nên :

\(\left(a+b+c\right)^2=1\)

=>\(a^2+b^2+c^2+2ab+2bc+2ac=1\)                                                                                                                                     =>\(2ab+2bc+2ac=1-a^2-b^2-c^2\)                                                                                                                           => \(2\left(ab+bc+ac\right)=1-a^2-b^2-c^2\)                                                                                                                                Vì \(1-a^2-b^2-c^2< 1\)                                                                                                                                                                  => 2(ab+bc+ac) < 1

=> ab+bc+ac< 1/2 (đpcm)

#hoctot 

#phanhne                                          

Ta có:

a+b+c=1

⇒(a+b+c)2=1

⇒a2+b2+c2+2ab+2ac+2bc=1

⇒2ab+2ac+2bc=1−a2−b2−c2

⇒2(ab+ac+bc)=1−a2−b2−c2

Vì 1−a2−b2−c2<1

⇒2(ab+ac+bc)<1

⇒ab+ac+bc < \(\frac{1}{2}\)

áp dụng B.C.S dạng phân thức

\(\frac{1}{ac}+\frac{1}{bc}\ge\frac{\left(1+1\right)^2}{c.\left(a+b\right)}\ge\frac{4}{\frac{\left(a+b+c\right)^2}{4}}=16\)

\(\Rightarrowđpcm\)

17 tháng 11 2019

๖²⁴ʱミ★๖ۣۜHυү❄๖ۣۜTú★彡⁀ᶦᵈᵒᶫ✎﹏

BCS ???

:))

30 tháng 12 2019

sos là ra

30 tháng 12 2019

Nhưng trước hết làm cho nó đẹp lại cái đã:v Bài toán gì đâu mà cho toàn phân thức xấu xí, lần sau bảo người ra đề chọn hệ số đẹp hơn nha zZz Cool Kid zZz  :DD

\(P=\frac{a^2+b^2+c^2+2\left(ab+bc+ca\right)}{30\left(a^2+b^2+c^2\right)}+\left(\frac{\left(a^3+b^3+c^3\right)}{4abc}-\frac{3}{4}\right)+\frac{3}{4}-\frac{131\left(a^2+b^2+c^2\right)}{60\left(ab+bc+ca\right)}\)

\(=\frac{47}{60}+\frac{\left(ab+bc+ca\right)}{15\left(a^2+b^2+c^2\right)}-\frac{131\left(a^2+b^2+c^2\right)}{60\left(ab+bc+ca\right)}+\frac{\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)}{4abc}\)

\(=\frac{47}{60}+\frac{ab+bc+ca}{15\left(a^2+b^2+c^2\right)}-\frac{131\left(a^2+b^2+c^2\right)}{60\left(ab+bc+ca\right)}+\frac{\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)}{\frac{4}{9}\left(a+b+c\right)\left(ab+bc+ca\right)}\)

\(=\frac{47}{60}+\frac{ab+bc+ca}{15\left(a^2+b^2+c^2\right)}-\frac{131\left(a^2+b^2+c^2\right)}{60\left(ab+bc+ca\right)}+\frac{9\left(a^2+b^2+c^2-ab-bc-ca\right)}{4\left(ab+bc+ca\right)}\)

\(=\frac{47}{60}+\frac{1\left(a^2+b^2+c^2\right)}{15\left(ab+bc+ca\right)}-\frac{131\left(ab+bc+ca\right)}{60\left(a^2+b^2+c^2\right)}\)

Đặt \(x=\frac{a^2+b^2+c^2}{ab+bc+ca}\Rightarrow x\ge1\). Ta cần tìm min:

\(P=f\left(x\right)=\frac{47}{60}+\frac{1}{15}x-\frac{131}{60x}\)

\(=\frac{47}{60}+\frac{1}{15}x+\frac{1}{15x}-\frac{9}{4x}\)

\(\ge\frac{47}{60}+\frac{2}{15}-\frac{9}{4}=-\frac{4}{3}\)

Đẳng thức xảy ra khi \(a=b=c\)

P/s: Tính dùng sos nhưng nghĩ lại ko nên lạm dụng nên dùng cách khác:))

15 tháng 11 2019

a) 

= căn 5 -2

b)

\(\sqrt{4+\sqrt{8}}.\sqrt{4-2-\sqrt{2}}\\ \)

\(\sqrt{4+\sqrt{8}}.\sqrt{2-\sqrt{2}}\)

\(2.\sqrt{2+\sqrt{2}}.\sqrt{2-\sqrt{2}}\)

=2.(4-2)

=4.

15 tháng 11 2019

Đặt \(n^4+n^3+1=a^2\)

\(\Leftrightarrow64n^4+64n^3+64=\left(8a\right)^2\)

\(\Leftrightarrow\left(8n^2+4n-1\right)^2-16n^2+8n+16n^2+63=\left(8a\right)^2\)

\(\Leftrightarrow\left(8n^2+4n-1\right)^2+8n+63=\left(8a\right)^2\)

\(\Rightarrow\left(8a\right)^2>\left(8n^2+4n-1\right)^2\)

\(\Rightarrow\left(8a\right)^2\ge\left(8n^2+4n\right)^2\)

\(\Rightarrow\left(8n^2+4n-1\right)^2+8n+63\ge\left(8n^2+4n\right)^2\)

\(\Rightarrow\left(8n^2+4n\right)^2-2\left(8n^2+4n\right)+1+8n+63\ge\left(8n^2+4n\right)^2\)

\(\Rightarrow16n^2\le64\)

\(\Rightarrow n^2\le4\Rightarrow n\in\left\{1;2\right\}\) vì m nguyên dương.

Vậy ....

17 tháng 5 2020

666666666666666666666666666666666666667777777777777777777777777788888888888888888888899999999999999999999999999944444444444444444444445555555555555555555523243435356666356467578556475786896897896756745342111111111111111111111122222222222222222223333333333333333333333333333333333344444454444444444444555555555555556666666666666666666666777777777777777777777778888888888888899999999999999101010101010101010101010101001010010100101001010010100000000000000000000000000000000000000000000001111111111111111111111000000000000000010101010

15 tháng 11 2019

Tham khảo

Câu hỏi của Châu Trần - Toán lớp 9 - Học toán với OnlineMath

15 tháng 11 2019

à xl gửi lộn