91 có phải là số nguyên tố không vậy giúp mik nhanh nhanh với mình tik cho
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


tháng 2 là “trường hợp đặc biệt” khi chỉ có 28 hoặc 29 ngày (nếu năm nhuận).
Theo tài liệu thu thập được từ các nhà khảo cổ, dương lịch ngày nay bắt nguồn từ người La Mã. Lịch dựa theo chu kì Mặt trăng làm ra
còn mình thì nghĩ là vì 1 năm có 365 ngày 6 giờ mà người ta lấy làm chẵn là 365 ngày và 6 giờ dồn lại một năm chia hết cho 4 (ví dụ: năm 2020 chia hết cho 4) thì tháng 2 được 29 ngày (vì 6 . 4 = 24 giờ = 1 ngày, 1 ngày này được cộng vào tháng 2)

a) vì OM <MN (3 < 4)
=>N không nằm giữa O và M
b) vì M, N thuộc tia Ox
nên ON = OM + MN
hay ON = 3+4
vậy ON=7

a) Gọi p là số nguyên tố cần tìm.
Nếu p chia hết cho 3 và p là số nguyên tố nên p = 3.
Ta có \(2p^2+1=19\).
Vậy p = 3 (thỏa mãn).
Nếu p chia cho 3 dư 1, ta có p = 3k + 1. ( k là một số tự nhiên).
\(2p^2+1=2.\left(3k+1\right)^2+1=2\left(9k^2+6k+1\right)+1=18k^2+12k+3\)\(=3\left(6k^2+4k+1\right)\) chia hết cho 3.
Nếu p chia cho 3 dư 2, ta có p = 3k + 2, (k là một số tự nhiên).
\(2p^2+1=2\left(3k+2\right)^2+1=2\left(9k^2+12k+4\right)+1\)\(=18k^2+24k+9=3\left(6k^2+8k+3\right)\) chia hết cho 3.
vậy p = 3 là giá trị cần tìm.
b) Dễ thấy p = 2 không phải là giá trị cần tìm.
vậy p là một số nguyên tố lẻ suy ra p có tận cùng là 1, 3, 5, 7.
nếu p có tận cùng là 1 thì \(p^2\) cũng có tận cùng là 1. Suy ra \(4p^2+1\) có tận cùng là 5. (loại)
nếu p có tận cùng là 3 thì \(p^2\) có tận cùng là 9. Suy ra \(6p^2+1\) có tận cùng là 5. (loại)
nếu p có tận cùng là 5 thì p phải bằng 5. Thay vào ta thấy của \(4p^2+1\) và \(6p^2+1\) đều là các số nguyên tố.
nếu p có tận cùng là 7 thì \(p^2\) có tận cùng bằng 9. Suy ra \(6p^2+1\) có tận cùng là 5. (loại)
nếu p có tận cùng là 9 thì \(p^2\) có tận cùng bằng 1. Suy ra \(4p^2+1\) có tận cùng là 5. (loại)
vậy p = 5 là giá trị cần tìm.

-3x - 9x = - 30 - 90
- 12x = -120
x = -120 : -12
x = 10

5n + 7 chia het cho n
Ma 5n chia het cho n
=> 7 chia het cho n
=> n thuộc {1;7}

ko phải đâu bạn
cảm ơn bạn nhé,bạn kết bạn với mình được không