1 cho các số thực a,b tn \(a^2+ab+b^2=3\)
tìm GTNN,GTLN của \(M=a^4-ab+b^4\)
2 cho các số dương a,b,c tm \(a+b+c=2019\) tìm GTNN \(M=\sqrt{2a^2+ab+2b^2}+\sqrt{2b^2+bc+2c^2}+\sqrt{2c^2+ca+2a^2}\)
3cho các số thực tm \(x+y+z\le1\)tìm GTNN \(P=\frac{1}{x^2+y^2+z^2}+\frac{2020}{xy+yz+xz}\)
4cho các số \(a,b,c>\frac{25}{4}\) tìm GTNN \(Q=\frac{a}{2\sqrt{b}-5}+\frac{b}{2\sqrt{c}-5}+\frac{c}{2\sqrt{a}-5}\)
5cho x,y>0 tm \(x+y=4\) tìm GTNN \(P=\sqrt{x^2+\frac{1}{x^2}}+\sqrt{y^2+\frac{1}{y^2}}\)
\(\sqrt{2a^2+ab+2b^2}=\sqrt{\frac{5}{4}\left(a+b\right)^2+\frac{3}{4}\left(a-b\right)^2}\ge\frac{5}{4}\left(a+b\right)\)
Tương tự cộng vế theo vế thì
\(M\ge\frac{5}{4}\left(2a+2b+2c\right)=\frac{5}{2}\left(a+b+c\right)=\frac{5}{2}\cdot2019\)
Dấu "=" xảy ra tại \(a=b=c=\frac{2019}{3}\)
bài 4 có trên mạng nha chị.tí e làm cách khác
bài 5 chị tham khảo bđt min cop ski r dùng svác là ra ạ.giờ e coi đá bóng,coi xong nghĩ tiếp ạ.
e nhầm đoạn này r
\(\sqrt{2a^2+ab+2b^2}\ge\frac{\sqrt{5}}{2}\left(a+b\right)\) rồi cộng lại thì
\(M\ge\frac{\sqrt{5}}{2}\left(2a+2b+2c\right)=\sqrt{5}\cdot2019\) ạ
Chắc lần này sẽ không nhầm nhưng hướng là thế ạ.