BCNN(a;b) - UCLN(a;b) = 5
BCNN(a;b) - UCLN(a;b) = 35
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2A=1+\frac{1}{2}+\frac{1}{2^2}+....+\frac{1}{2^{99}}\)
\(2A-A=1-\frac{1}{2^{100}}\Rightarrow A=1-\frac{1}{2^{100}}\)
ko đăng khi đã biết
biết rồi thì ko đăng
đăng chi cho mệt
chú ý rút kinh nghiệm
Đây chỉ là ý kiến của mk " ko biết đúng sai "
Giải
gọi số cần tìm là ab (a, b = 1,2,..., 9)
giả thiết ta có: (ab)² - (ba)² = n² (ab và ba có gạch đầu)
<=> (10a+b)² - (10b+a)² = n² <=> [(10a+b) - (10b+a)][(10a+b) + (10b+a)] = n²
<=> (9a-9b)(11a+11b) = n² <=> 3².11.(a-b)(a+b) = n² (*)
do 11 là số nguyên tố nên (*) chỉ xãy ra khi a-b hoặc a+b có ước là 11
0 < a, b < 9 nên a+b < 22 và a-b < 9 vậy chỉ có 1 khã năng là a+b = 11
và ta còn phải có a-b là số chính phương (có thể mò vài cặp là đc) hoặc biện luận:
thấy a > b ; a+b = 11 => a = 11-b > 11/2 , chỉ cần kiểm tra cho b từ 1 đến 5
b = 1, a = 10 thỏa ; b = 5, a = 6 thỏa
vậy có 2 số thỏa mãn yêu cầu là: 11 và 65
(cái số 11 hơi kì nhưng vẫn thỏa mãn: 11² - 11² = 0² )
~ ~ ~ ~ ~ ~
Có 2A = 2-2^2+2^3-2^4+.....+2^1015-2^2016+2^2017
3A = 2A+A = (2-2^2+2^3-2^4+....+2^2015-2^2016+2^2017) + (1-2+2^2-2^3+....+2^2016)
= 2^2017 + 1
=> 3A - 2^2017 = 2^2017 + 1 - 2^2017 = 1
\(....=\left(2^4\right)^5+2^{15}=2^{20}+2^{15}=2^{15}\left(2^5+1\right)=2^{15}.33⋮33\)
Ta có: \(S=20.21+21.22+22.23+....+39.40\)
\(\Rightarrow3S=3.20.21+3.21.22+.....+3.39.40\)
\(\Rightarrow3S=20.21.\left(22-19\right)+22.23.\left(24-21\right)+.....+39.40.\left(41-38\right)\)
\(\Rightarrow3S=39.40.41-19.20.21\)
\(\Rightarrow3S=55980\)
\(\Rightarrow S=18660\)