Tìm giá trị nhỏ nhất của:
\(A=x+y+z+xy+yz+zx\)biết \(x^2+y^2+z^2=3\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(ĐKXĐ:...\)
Đặt \(\sqrt{2x+3}+\sqrt{x+1}=a>0\)
\(\Rightarrow a^2-4=3x+2\sqrt{2x^2+5x+3}\left(1\right)\)
Phương trình trở thành :
\(a=a^2-4-16\Leftrightarrow a^2-a-20=0\Rightarrow\orbr{\begin{cases}a=5\\a=-4\left(l\right)\end{cases}}\)
Thay vào (1)
\(\sqrt{2x+3}+\sqrt{x+1}=5\)
\(\Leftrightarrow\sqrt{2x+3}-3+\sqrt{x+1}-2=0\)
\(\Leftrightarrow\frac{2\left(x-3\right)}{\sqrt{2x+3}+3}+\frac{x-3}{\sqrt{x+1}+2}=0\)
\(\Leftrightarrow\left(x-3\right)\left(\frac{2}{\sqrt{2x+3}+3}+\frac{1}{\sqrt{x+1}+2}\right)=0\)
\(\Rightarrow x=3\)
Để hàm trên là hàm bậc nhất thì cần điêu kiện sau :
\(\hept{\begin{cases}m^2-5m+6=0\\m-1\ne0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\left(m-2\right)\left(m-3\right)=0\\m\ne1\end{cases}}\)
Do đó : \(m=2\) hoặc \(m=3\)
Chúc bạn học tốt !!!
Vì x,y,z dương = > x2019 ; y2019 ; z2019
Ta có : 3 = 1 + 1 + 1 hoặc = 1 + 2 + 0
Mà nếu một số = 2 ( g/s là x2019 ) = > x ko là số dương = > Loại trường hợp có số hạng 2
= > x2019 + y2019 + z2019 = 1 + 1 + 1
= > x2019 = y2019 = z2019 = 1 = > x = y = z = 1
= > M = x2 + y2 + z2 = 12 + 12 + 12 = 1 + 1 + 1 = 3
Vậy M = 3
Đặt \(a=\frac{1}{x};b=\frac{1}{y};c=\frac{1}{z}\Rightarrow xyz=1\)
Không khó để chứng minh \(\frac{y}{x}+\frac{z}{y}+\frac{x}{z}\ge x+y+z\)
\(VT=\Sigma\frac{y^2z}{x^2\left(1+2z\right)}=\Sigma\frac{\left(\frac{y^2}{x^2}\right)}{\frac{1+2z}{z}}\ge\frac{\left(\frac{y}{x}+\frac{z}{y}+\frac{x}{z}\right)^2}{\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+6}\)
\(\ge\frac{\left(x+y+z\right)^2}{xy+yz+zx+6}\ge\frac{\left(x+y+z\right)^2}{\frac{\left(x+y+z\right)^2}{3}+6}\)
Đặt \(t=x+y+z\ge3\sqrt[3]{xyz}=3\).Cần chứng minh:
\(f\left(t\right)=\frac{t^2}{\frac{t^2}{3}+6}\ge1\Leftrightarrow\frac{2}{3}\left(t-3\right)\left(t+3\right)\ge0\)(đúng)
IS that true?
Làm xong em mới nhận ra không cần đổi biến:D
Ta có:
\(\frac{a}{b}+\frac{a}{b}+\frac{b}{c}\ge3\sqrt[3]{\frac{a^2}{bc}}=3\sqrt[3]{\frac{a^3}{abc}}=3a\)
Tương tự: \(\frac{b}{c}+\frac{b}{c}+\frac{c}{a}\ge3b;\frac{c}{a}+\frac{c}{a}+\frac{a}{b}\ge3c\)
Cộng theo vế 3 BĐT trên suy ra \(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\ge a+b+c\)
Trở lại bài toán: \(VT=\Sigma_{cyc}\frac{\left(\frac{a^2}{b^2}\right)}{c+2}\ge\frac{\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\right)^2}{a+b+c+6}\ge\frac{\left(a+b+c\right)^2}{a+b+c+6}=\frac{t^2}{t+6}\)(với \(t=a+b+c\ge3\sqrt[3]{abc}=3\))
Cần chúng minh: \(\frac{t^2}{t+6}\ge1\Leftrightarrow t^2-t-6\ge0\Leftrightarrow\left(t-3\right)\left(t+2\right)\ge0\)(đúng)
\(A=\sqrt{2x^2-4x+5}+1\)
\(=\sqrt{2\left(x^2-2x+1\right)+3}+1\)
\(=\sqrt{2\left(x-1\right)^2+3}+1\)
=> \(A_{min}=\sqrt{3}+1\) khi và chỉ khi \(\left(x-1\right)^2=0\)hay \(x=1\)
A=6
vì A nhỏ nhất=>x,y,z nhỏ nhất , suy ra x,y,z =1
thử lại đều thỏa mãn
Vạy A=5
bạn bớt làm tắt đc ko vậy