2*x^2 + 3*y^2 + 4*x = 19
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bạn vào toán bình thường r kéo xuống khi đến bài đầu tiên của kì 2
Lời giải:
$ab+bc+ac=3abc\Rightarrow \frac{1}{a}+\frac{1}{b}+\frac{1}{c}=3$
Đặt $\frac{1}{a}=x, \frac{1}{b}=y; \frac{1}{c}=z$ thì bài toán trở thành:
Cho $x,y,z>0$ thỏa mãn $x+y+z=3$.
Tìm min $S=\sum \frac{x^3}{x^2+y^2}$
---------------------------
Có:
$S=\sum (x-\frac{xy^2}{x^2+y^2})=\sum x- \sum \frac{xy^2}{x^2+y^2}$
$=3-\sum \frac{xy^2}{x^2+y^2}$
$\geq 3-\sum \frac{xy^2}{2xy}=3-\sum \frac{y}{2}$ (áp dụng BĐT AM-GM)
$=3-\frac{3}{2}=\frac{3}{2}$
Vậy $S_{\min}=\frac{3}{2}$. Giá trị này đạt tại $x=y=z=1$ hay $a=b=c=1$
Gọi A là đỉnh hình chóp và BC là 1 cạnh đáy (BC = 2,2m) tạo thành tam giác ABC cân tại A, AH là đường cao kẻ từ A xuống BC (H thuộc BC và AH = 2,8m)
=> AH đồng thời là đường trung trực của BC
=> H là trung điểm BC => BH = BC/2 = 2,2/2 = 1,1 (m)
Xét tam giác ABH vuông tại H (AH vuông góc với BC)
=> AB = \(\sqrt{BH^2+AH^2}\) = \(\sqrt{1,1^2+2,8^2}\) = 6,5 (m)
Vậy độ dài cạnh bên khoảng 6,5 m
Lời giải:
$a(x+2)^2+b(x+3)^3=cx+5$
$\Leftrightarrow bx^3+x^2(a+9b)+x(4a+27b)+(4a+27b)=cx+5$
Để điều này xảy ra với mọi $x\in\mathbb{R}$ thì:
\(\left\{\begin{matrix} b=0\\ a+9b=0\\ 4a+27b=c\\ 4a+27b=5\end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} b=0\\ a=0\\ c=0\\ 4a+27b=5\end{matrix}\right. \) (vô lý)
Do đó không tồn tại $a,b,c$ thỏa đề.
\(\left(x-2\right)\left(x-3\right)-2x\left(1-x\right)\)
\(=x^2-3x-2x+6-2x+2x^2\)
\(=x^2-5x+6-2x+2x^2\)
\(=3x^2-7x+6\)
_______________
\(\left(x+5\right)^2-\left(x+3\right)\left(x-2\right)\)
\(=\left(x^2+10x+25\right)-\left(x^2-2x+3x-6\right)\)
\(=x^2+10x+25-x^2-x+6\)
\(=9x+31\)
Bạn cần làm gì và điều kiện về $x,y$ như thế nào bạn nên ghi chú đầy đủ ra để mọi người trợ giúp tốt hơn.