K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
11 tháng 11 2023

Bạn cần làm gì và điều kiện về $x,y$ như thế nào bạn nên ghi chú đầy đủ ra để mọi người trợ giúp tốt hơn.

12 tháng 11 2023

bạn vào toán bình thường r kéo xuống khi đến bài đầu tiên của kì 2

AH
Akai Haruma
Giáo viên
11 tháng 11 2023

Lời giải:
$ab+bc+ac=3abc\Rightarrow \frac{1}{a}+\frac{1}{b}+\frac{1}{c}=3$

Đặt $\frac{1}{a}=x, \frac{1}{b}=y; \frac{1}{c}=z$ thì bài toán trở thành:

Cho $x,y,z>0$ thỏa mãn $x+y+z=3$.

Tìm min $S=\sum \frac{x^3}{x^2+y^2}$
---------------------------

Có:

$S=\sum (x-\frac{xy^2}{x^2+y^2})=\sum x- \sum \frac{xy^2}{x^2+y^2}$

$=3-\sum \frac{xy^2}{x^2+y^2}$

$\geq 3-\sum \frac{xy^2}{2xy}=3-\sum \frac{y}{2}$ (áp dụng BĐT AM-GM)

$=3-\frac{3}{2}=\frac{3}{2}$

Vậy $S_{\min}=\frac{3}{2}$. Giá trị này đạt tại $x=y=z=1$ hay $a=b=c=1$

10 tháng 11 2023

chịu

 

10 tháng 11 2023

Gọi A là đỉnh hình chóp và BC là 1 cạnh đáy (BC = 2,2m) tạo thành tam giác ABC cân tại A, AH là đường cao kẻ từ A xuống BC (H thuộc BC và AH = 2,8m)

=> AH đồng thời là đường trung trực của BC

=> H là trung điểm BC => BH = BC/2 = 2,2/2 = 1,1 (m)

Xét tam giác ABH vuông tại H (AH vuông góc với BC)

=> AB = \(\sqrt{BH^2+AH^2}\) = \(\sqrt{1,1^2+2,8^2}\) = 6,5 (m)

Vậy độ dài cạnh bên khoảng 6,5 m

AH
Akai Haruma
Giáo viên
11 tháng 11 2023

Lời giải:
$a(x+2)^2+b(x+3)^3=cx+5$

$\Leftrightarrow bx^3+x^2(a+9b)+x(4a+27b)+(4a+27b)=cx+5$

Để điều này xảy ra với mọi $x\in\mathbb{R}$ thì:

\(\left\{\begin{matrix} b=0\\ a+9b=0\\ 4a+27b=c\\ 4a+27b=5\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} b=0\\ a=0\\ c=0\\ 4a+27b=5\end{matrix}\right. \) (vô lý)

Do đó không tồn tại $a,b,c$ thỏa đề.

10 tháng 11 2023

\(\left(x-2\right)\left(x-3\right)-2x\left(1-x\right)\)

\(=x^2-3x-2x+6-2x+2x^2\)

\(=x^2-5x+6-2x+2x^2\)

\(=3x^2-7x+6\) 

_______________

\(\left(x+5\right)^2-\left(x+3\right)\left(x-2\right)\)

\(=\left(x^2+10x+25\right)-\left(x^2-2x+3x-6\right)\)

\(=x^2+10x+25-x^2-x+6\)

\(=9x+31\)