Giải phương trình:
a) \(\sqrt{x-2}=\sqrt{11-6\sqrt{2}}-\sqrt{6-4\sqrt{2}}\)
b) \(\sqrt{x^2-2x+1}=3\)
c) \(\sqrt{9x-18}+\sqrt{4x+8}-\frac{1}{3}\sqrt{25x-50}=14+\sqrt{x-2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có : \(x\sqrt{2017-y^2}\le\frac{x^2+2017-y^2}{2}\)
\(y\sqrt{2017-x^2}\le\frac{y^2+2017-x^2}{2}\)
Do đó \(x\sqrt{2017-y^2}+y\sqrt{2017-x^2}\le2017\)
dấu = xảy ra khi và chỉ khi :\(\hept{\begin{cases}x^2=2017-y^2\\y^2=2017-x^2\end{cases}}\)
\(\Leftrightarrow2\left(x^2+y^2\right)=2.2017\)(cộng vế với vế)
\(\Leftrightarrow x^2+y^2=2017\)
\(C=1-\frac{2}{2.3}+1-\frac{2}{3.4}+...+1-\frac{2}{2019.2020}\)
\(=2018-2\left(\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2019.2020}\right)\)
\(=2018-2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2019}-\frac{1}{2020}\right)\)
\(=2018-2\left(\frac{1}{2}-\frac{1}{2020}\right)\)
\(=2018-2.\frac{1009}{2020}\)
\(=2018-\frac{1009}{1010}\)
\(=\frac{2037171}{1010}\)
\(x=\frac{1}{\sqrt[3]{4-\sqrt{15}}}+\sqrt[3]{4-\sqrt{15}}\)
<=> \(x^3=\frac{1}{4-\sqrt{15}}+3\left(\frac{1}{\sqrt[3]{4-\sqrt{15}}}+\sqrt[3]{4-\sqrt{15}}\right)\left(\frac{1}{\sqrt[3]{4-\sqrt{15}}}.\sqrt[3]{4-\sqrt{15}}\right)\)
\(+4-\sqrt{15}\)
<=> \(x^3=\frac{1}{4-\sqrt{15}}+4-\sqrt{15}+3x\)
<=> \(x^3-3x+2006=\frac{1}{4-\sqrt{15}}+4-\sqrt{15}+2006\)
<=> \(x^3-3x+2006=\frac{4+\sqrt{15}}{16-15}+4-\sqrt{15}+2006\)
<=> \(x^3-3x+2006=2014\)
a ) \(ĐKXĐ\hept{\begin{cases}x\ge0\\x\ne4\\x\ne9\end{cases}}\)
\(A=\frac{2\sqrt{x}-9}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}-\frac{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}+\frac{\left(2+\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)
\(=\frac{2\sqrt{x}-9-x+9+2x-4\sqrt{x}+\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)
\(=\frac{x-\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)
\(=\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x-3}\right)}\)
\(=\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}=\frac{\sqrt{x}+1}{\sqrt{x}-3}\)
b ) \(A=\frac{\sqrt{x}+1}{\sqrt{x}-3}< 1\)
\(\Leftrightarrow\frac{\sqrt{x}+1}{\sqrt{x}-3}-1< 0\)
\(\Leftrightarrow\frac{\sqrt{x}+1-\sqrt{x}+3}{\sqrt{x}-3}< 0\)
\(\Leftrightarrow\frac{4}{\sqrt{x}-3}< 0\)
\(\sqrt{x}-3< 0\)
\(\Leftrightarrow x< 9\)
Vậy với \(0\le x\le9;x\ne4\) thì ...
Chúc bạn học tốt !!!