K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 12 2019

Cho tam giac ABC ,M la TD cua AC . Tren tia doi cua tia MB lay D sao cho MD bang MB

a. C/m: tam giac AMD bang tam giac CMB ; goc ADM bang goc CBM

b. C/m: AD//BC

c.goi N la TD cua AB >Tren tia doi cua tia NC lay diem E sao cho NE bang NC. C/m A la TD cua ED

11 tháng 12 2019

ta có : y = ( m -1 ) x + 2 cắt y = 3x + 1

\(\Rightarrow m-1\ne3\)

\(\Rightarrow m\ne4\)

11 tháng 12 2019

ĐK : \(x\ge-2;y\ge-3\)

pt (1) <=> \(x^3+x=\left(y+1\right)^3+\left(y+1\right)\)

<=> \(\left(y+1\right)^3-x^3+\left(y+1\right)-x=0\)

<=> \(\left(y+1-x\right)\left(\left(y+1\right)^2+\left(y+1\right)x+x^2+1\right)=0\)

<=> \(y+1-x=0\) vì \(\left(y+1\right)^2+\left(y+1\right)x+x^2+1>0\)dễ chứng minh.

<=> \(x=y+1\)(1')

pt (2) <=> \(\sqrt{\left(\sqrt{x+2}-2\right)^2}+\sqrt{\left(\sqrt{y+3}-3\right)^2}=1\)

<=> \(\left|\sqrt{x+2}-2\right|+\left|\sqrt{y+3}-3\right|=1\)(2')

Thế (1') vào (2') ta có: \(\left|\sqrt{y+3}-2\right|+\left|\sqrt{y+3}-3\right|=1\)

Có: \(\left|\sqrt{y+3}-2\right|+\left|\sqrt{y+3}-3\right|=\left|\sqrt{y+3}-2\right|+\left|3-\sqrt{y+3}\right|\ge1\)

Do đó: \(\left|\sqrt{y+3}-2\right|+\left|\sqrt{y+3}-3\right|=1\)<=> \(\left(\sqrt{y+3}-2\right)\left(3-\sqrt{y+3}\right)\ge0\)

<=> \(2\le\sqrt{y+3}\le3\)

<=> \(4\le y+3\le9\)

<=> \(1\le y\le6\)(tm) 

Khi đó: x = y + 1 với mọi y thỏa mãn \(1\le y\le6\)

Vậy tập nghiệm  \(S=\left\{\left(y+1;y\right):1\le y\le6\right\}\)

11 tháng 12 2019

DK: \(x\ge1;y\ge0\)

Ta có: \(x^2-2y^2=xy+x+y\)

<=> \(x^2-\left(y+1\right)x-2y^2-y=0\)(1)

xem (1) là phương trình ẩn x tham số y

\(\Delta=\left(y+1\right)^2-4\left(-2y^2-y\right)=9y^2+6y+1=\left(3y+1\right)^2\)

pt (1) có 2 nghiệm : \(\orbr{\begin{cases}x=\frac{y+1+3y+1}{2}=2y+1\\x=\frac{y+1-\left(3y+1\right)}{2}=-y\end{cases}}\)

+) Với x = 2y +1; thế vào pt (2) ta có: 

\(\left(2y+1\right)\sqrt{2y}-y\sqrt{2y}=3y+3\)

<=> \(\left(y+1\right)\sqrt{2y}=3\left(y+1\right)\)

<=> \(\orbr{\begin{cases}y+1=0\\\sqrt{2y}=3\end{cases}\Leftrightarrow\orbr{\begin{cases}y=-1\left(loại\right)\\y=\frac{9}{2}\end{cases}}}\)

Với  y = 9/2 => x = 10 thỏa mãn

+) Với x = - y 

Ta có: \(x\ge1\Rightarrow-y\ge1\Rightarrow y\le-1\)vô lí vì \(y\ge0\).

Vậy x = 10; y = 9/2.

11 tháng 12 2019

viết câuTương đương mà nghĩa không thay đổi

mary usually gets 8 for her math tests. Dave usually gets 10 for his maths tests

11 tháng 12 2019

Qua O kẻ đường thẳng vuông góc với OC cắt AC; BC  lần lượt tại M và N

Xét \(\Delta\)CMN có: CO là phân giác đồng thời là đường cao 

=> \(\Delta\)CMN cân 

=> ^CMN = ^CNM  => ^CMO = ^CNO  => ^AMO = ^BNO 

=> ^MAO + ^AOM = ^NBO + ^BON    ( 1)

Xét trong \(\Delta\)BOA ta có: ^ABO + ^BAO = ^AOM + ^BON ( = 180 \(^o\)- ^AOB ) 

=> ^NBO + ^MAO = ^AOM+ ^BON ( AO ; BO là phân giác ^A; ^B ) (2)

Từ (1)- (2) => ^AOM - ^NBO = ^NBO - ^AOM 

=> ^AOM = ^NBO  (3) 

Từ (3) dễ dàng chứng minh đươc \(\Delta\)AOM ~ \(\Delta\)OBN ~ \(\Delta\)ABO ( g-g ) ( tự chứng minh )

Có: \(\Delta\)AOM ~ ​\(\Delta\)OBN => \(\frac{AM}{ON}=\frac{OM}{BN}\)=> AM.BN = OM. ON​  (4)

Có: \(\Delta\)OBN ~ \(\Delta\)ABO => \(\frac{OB}{BN}=\frac{AB}{OB}\)=> OB.OB = AB.BN => \(\frac{OB^2}{AB.BC}=\frac{BN}{BC}\)(5)

Có: \(\Delta\)AOM ~ \(\Delta\)ABO => \(\frac{OA}{AM}=\frac{AB}{OA}\)=> OA.OA =AM.AB => \(\frac{OA^2}{AB.AC}=\frac{AM}{AC}\)(6)

Xét \(\Delta\)cân CMN có: OM = ON ; CM = CN 

Xét \(\Delta\)CON vuông tại O => CN\(^2\)= ON\(^2\)+ OC\(^2\)

=> OC \(^2\)= CN\(^2\)- ON\(^2\)= CN.CM  - ON.OM =  ( BC - BN ) ( AC - AM )  - ON.OM

= BC.AC - BN. AC - BC.AM + BN. AM - ON . OM  = BC. AC - BN.AC - BC.AM  ( theo 4 =>  BN. AM - ON . OM = 0)

=> \(\frac{OC^2}{CA.CB}=1-\frac{BN}{BC}-\frac{AM}{AC}\)(7)

Từ (5); (6) (7) => \(\frac{OC^2}{AC.BC}=1-\frac{OA^2}{AB.AC}-\frac{OB^2}{BA.BC}\)

Chuyển vế => Điều phải chứng minh

11 tháng 12 2019

dùng cái này : \(\sin2\alpha=2sin\alpha.\cos\alpha\)

10 tháng 12 2019

Phương trình (2) <=> x +3xy = 3xy + y + 5 

<=> x = y + 5 <=> x - y = 5

phương trình (1) <=>  (x - y ) \(^2\)=1 

Khi đó ta có: 5\(^2\)=1 vô lí

Em kiểm tra lại đề bài nhé!

10 tháng 12 2019

dạ để em kiểm lại

10 tháng 12 2019

\(3^x+171=y^2\)

+) Với x = 0 ta có: \(1+171=y^2\)( loại )

+) Với x = 1, ta có: \(3+171=y^2\)( loại )

+) Với x > 1.

pt <=> \(9\left(3^{x-2}+19\right)=y^2\)

=> \(3^{x-2}+19=z^2\)với \(y=3z\)( z là số tự nhiên )

+) TH1: \(x-2=2k+1\)( k là số tự nhiên )

Ta có: \(3^{2k+1}+19=z^2\)

có: \(3^{2k+1}+19⋮2\)

nhưng \(3^{2k+1}+19=3^{2k}.3+1+16+2\): 4 dư 2

=> \(3^{2k+1}+19\) không phải là số chính phương

Vậy loại trường hợp này

+) TH2: \(x-2=2k\)( k là số tự nhiên )

Ta có: \(3^{2k}+19=z^2\)

<=> \(\left(z-3^k\right)\left(z+3^k\right)=19\) (1)

z, 3^k là số tự nhiên nên ( 1) <=> \(\hept{\begin{cases}z+3^k=19\\z-3^k=1\end{cases}\Leftrightarrow}\hept{\begin{cases}z=10\\k=2\end{cases}}\)=> x = 6; y = 30. Thử lại thấy thỏa mãn

Vậy....