K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 12 2019

ĐK: Tự tìm 

Đặt \(\left(x+2\right)=u;\left(y+6\right)=v\)

phương trình (2) <=> \(2\sqrt{\left(x+2\right)\left(3x+6-6-y\right)}=y+6\)

=>  \(2\sqrt{u\left(3u+v\right)}=v\)

<=> \(\hept{\begin{cases}4u\left(3u+v\right)=v^2\\v\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}12u^2+4uv=v^2\left(1'\right)\\v\ge0\left(2'\right)\end{cases}}\)

(1') <=> \(v^2-4uv-12u^2=0\)

\(\Delta_u=4u^2+12u^2=16u^2\)

=> \(\orbr{\begin{cases}v=2u+4u=6u\\v=2u-4u=-2u\end{cases}}\)

Với v = 6u ta có:  y + 6 = 6 ( x + 2 ) <=> y = 6x + 6  thế vào phương trình ban đầu => tìm x, y

 Với  v = - 2u  ta có:.... 

Thế nhé! Em làm tiếp! 

12 tháng 12 2019

\(\sqrt{14}-6\sqrt{5}-\sqrt{21}-8\sqrt{5}.\)

\(=\left(-6\sqrt{5}-8\sqrt{5}\right)+\left(\sqrt{14}-\sqrt{21}\right)\)

\(=-14\sqrt{5}+\sqrt{7}\left(\sqrt{2}-\sqrt{3}\right)\)

12 tháng 12 2019

a/ 

HC=HD (bán kính vuông góc với dây cung thì chia đôi dây cung)

HA=HE (đề bài)

=> ACED là hình bình hành (Tứ giác có hai đường chéo cắt nhau tại trung điểm mỗi đường)

Mà AE vuông góc CD

=> ACED là hình thoi (Hình bình hành có hai đường chéo vuông góc với nhau là hình thoi)

b/

Vì ACDE là hình thoi => AD=ED => tg ADE cân tại D

Mà DH vuông góc AE

=> DH là đường cao đồng thời là đường phân giác của ^ADE => ^ADC=^CDI

Ta có \(sđ\widehat{ADC}=\frac{1}{2}sđ\widebat{AC}\)(góc nội tiếp đường tròn (O))

\(sđ\widehat{ABC}=\frac{1}{2}sđ\widebat{AC}\) (góc nội tiếp đường tròn (O))

=> ^CDI=^ABC

Xét tg vuông BCH có

^ABC+^DCB=90 => ^CDI+^DCB=90 => ^CID=90=> ^EIB=90

=> I nhìn EB dưới 1 góc vuông => I thuộc đường trong đường kính EB tâm O' là trung điểm của EB

c/

Xét tg vuông CDI có \(IH=CH=DH=\frac{CD}{2}\) (trung tuyến thuộc cạnh huyền)

=> tg DHI cân tại H => ^CDI=^DIH (1)

Xét tg vuông BIE có \(IO'=EO'=BO'\) (trung tuyến thuộc cạnh huyền)

=> tg BIO' cân tại O' => ^ABC=^BIO' (2)

Mà ^CDI=^ABC (cmt) (3)

Từ (1) (2) (3) => ^DIH=^BIO'

Mà ^BIO'+^O'IE=90 => ^DIH+^O'IE=^HIO'=90 => HI vuông góc IO' => HI là tiếp tuyến của đường tròn (O') tại I

d/

Ta có OA=5 => AB=10

EO'=3=> EB=6

=> AE=AB-EB=10-6=4 => HE=2

=> HO'=HE+EO'=2+3=5

Mà IO'=EO' (cmt)=3

Xét tg vuông HIO' có

\(HI^2=HO'^2-IO'^2=5^2-3^2=16\Rightarrow HI=4\)

12 tháng 12 2019

\(1=a^3+b^3+c^3-3abc=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\)

\(\Rightarrow2P=2a^2+2b^2+2c^2=\frac{2}{a+b+c}+2ab+2bc+2ca\)

\(\Rightarrow3P=3a^2+3b^2+3c^2=\frac{2}{a+b+c}+a^2+b^2+c^2+2ab+2bc+2ca\)

\(=\frac{1}{a+b+c}+\frac{1}{a+b+c}+\left(a+b+c\right)^2\ge3\sqrt[3]{\frac{\left(a+b+c\right)^2}{\left(a+b+c\right)^2}}=3\)

\(\Rightarrow P\ge1\)

Đẳng thức xảy ra khi \(\left(a;b;c\right)=\left(0;0;1\right)\) và các hoán vị.

12 tháng 12 2019

min(!;1;1)

max (0;0;3)

Do vai trò của a, b, c là bình đẳng nên ta có thể giả sử \(a\ge b\ge c\)

*Tìm Min: 

Cách 1:

Theo nguyên lí Dirichlet trong 3 số a -1; b-1; c-1 tồn tại ít nhất 2 số mà tích chúng không âm. Giả sử\(\left(a-1\right)\left(b-1\right)\ge0\Rightarrow abc\ge ca+bc-c\)

Từ đó \(P\ge a^2+b^2+c^2+ca+bc-c=a^2+b^2+c\left(a+b+c-1\right)\)

\(=\left(a^2+1\right)+\left(b^2+1\right)+2c-2\ge2\left(a+b+c\right)-2=4\)

Đẳng thức xảy ra khi \(a=b=c=1\)

*Tìm max:

\(P\le a^2+b^2+c^2+6abc\)

Ta sẽ chứng minh: \(a^2+b^2+c^2+6abc\le9=\left(a+b+c\right)^2\)

\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2\right)+18abc\le\left(a+b+c\right)^3\)

\(VP-VP=2\left[a\left(b-c\right)^2+b\left(c-a\right)^2+c\left(a-b\right)^2\right]\ge0\)

Đẳng thức xảy ra khi \(\left(a;b;c\right)=\left(0;0;3\right)\) và các hoán vị.

12 tháng 12 2019

Bỏ 2 dòng đầu đi nha, nháp thôi á!

12 tháng 12 2019

Giả sử z = min{x,y,z} \(\Rightarrow4=x+y+z+xyz\ge z^3+3z\Leftrightarrow\left(z-1\right)\left(z^2+z+4\right)\le0\Rightarrow z\le1\)(*)

Chọn t thỏa mãn \(\hept{\begin{cases}x+y+z+xyz=2t+z+t^2z\\2t+z+t^2z=4\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x+y-2t=\left(t^2-xy\right)z\left(1\right)\\2t+z+t^2z=4\left(2\right)\end{cases}}\)

Giả sử \(t^2< xy\Rightarrow2t>x+y\ge2\sqrt{xy}\Rightarrow t^2>xy\) (mâu thuẫn với giả sử)

Vậy \(t^2\ge xy\Rightarrow x+y\ge2t\). Đặt  P = f(a;b;c). Xét hiệu:

\(f\left(x;y;z\right)-f\left(t;t;z\right)=z\left(x+y-2t\right)-\left(t^2-xy\right)\)

\(=z^2\left(t^2-xy\right)-\left(t^2-xy\right)=\left(z^2-1\right)\left(t^2-xy\right)\le0\)

Vậy: \(P=f\left(x;y;z\right)\le f\left(t;t;z\right)=t^2+2tz\)

 Từ \(\left(2\right)\Rightarrow z=\frac{\left(4-2t\right)}{t^2+1}.\text{Do }z\ge0\Rightarrow4-2t\ge0\Rightarrow t\le2\)

Mặc khác do (*): \(\Rightarrow4=2t+z+t^2z\le t^2+2t+1\Rightarrow\left(t+3\right)\left(t-1\right)\ge0\Rightarrow2\ge t\ge1\)

Vậy ta tìm max của: \(f\left(t;t;z\right)=f\left(t;t;\frac{4-2t}{t^2+1}\right)=t^2+\frac{2t\left(4-2t\right)}{t^2+1}\)

Dễ thấy hàm số này đồng biến suy ra \(f\left(t;t;\frac{4-2t}{t^2+1}\right)\) đạt max khi t = 2. Khi đó \(P=f\left(a;b;c\right)\le f\left(t;t;\frac{4-2t}{t^2+1}\right)\le4\)

Đẳng thức xảy ra khi \(\left(x;y;z\right)=\left(2;2;0\right)\) và các hoán vị.

P/s: em hết cách rồi nên đành chơi kiểu này:(