K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
26 tháng 11 2023

Lời giải:

$M=x^3+y^3+2xy=(x+y)(x^2-xy+y^2)+2xy=x^2-xy+y^2+2xy$

$=x^2+y^2+xy=\frac{1}{4}(x-y)^2+\frac{3}{4}(x+y)^2=\frac{1}{4}(x-y)^2+\frac{3}{4}\geq \frac{3}{4}$

Vậy $M_{\min}=\frac{3}{4}$. Giá trị này đạt được khi $x=y=\frac{1}{2}$

26 tháng 11 2023

bbbbbbbbbbbbffv

AH
Akai Haruma
Giáo viên
27 tháng 11 2023

Đề là $x(x+3)^3$ hay $x(x+3)^2$ hả bạn?

26 tháng 11 2023

AH
Akai Haruma
Giáo viên
27 tháng 11 2023

Lời giải:

a. Xét tam giác $AME$ và $AHE$ có:

$AE$ chung

$\widehat{AEM}=\widehat{AEH}=90^0$

$ME=HE$ (gt)

$\Rightarrow \triangle AME=\triangle AHE$(c.g.c)

$\Rightarrow AM=AH(1)$

Hoàn toàn tương tự ta có $\triangle AHF=\triangle ANF$ (c.g.c)

$\Rightarrow AH=AN(2)$

Từ $(1); (2)\Rightarrow AM=AN$ nên tam giác $AMN$ là tam giác cân tại $A$.

b.

Ta có:

$\frac{HE}{EM}=\frac{HF}{FN}=1$ nên theo định lý Talet thì $EF\parallel MN$ 

c.

Vì tam giác $AMN$ cân tại $A$ (cm ở phần a) nên trung tuyến $AI$ đồng thời là đường cao.

$\Rightarrow AI\perp MN$

Mà $MN\parallel EF$

$\Rightarrow AI\perp EF$ (đpcm)

 

AH
Akai Haruma
Giáo viên
27 tháng 11 2023

Hình vẽ:

26 tháng 11 2023

x²y + xy² - x - y

= (x²y + xy²) - (x + y)

= xy(x + y) - (x + y)

= (x + y)(xy - 1)

26 tháng 11 2023

a) Ta tính tổng số các cặp lớp phân biệt có thể xảy ra.

 Vị trí đầu tiên có \(x\) cách chọn và vị trí thứ hai sẽ có \(x-1\) cách chọn (do một lớp bất kì không thể đấu với chính lớp đó). Nhưng nếu tính như trên, thì mỗi trận đấu giữa 2 đội bất kì sẽ bị lặp lại thêm 1 lần, nên tổng số trận đấu khác nhau là \(\dfrac{x\left(x-1\right)}{2}\)

 b) Cho \(\dfrac{x\left(x-1\right)}{2}=105\)

\(\Leftrightarrow x^2-x-210=0\)

\(\Leftrightarrow\left(x-21\right)\left(x+20\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=21\left(nhận\right)\\x=-20\left(loại\right)\end{matrix}\right.\)

Vậy có 21 đội tham gia.