Phân tích đa thức thành nhân tử
x^2+x+6
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
d) x2 + 2x + 2 < 0
<=> x2 + 2x + 1 + 1 < 0
<=> ( x + 1 )2 + 1 < 0
<=> ( x + 1 )2 < -1 ( vô lí )
=> BPT vô nghiệm ( đpcm )
e) 4x2 - 4x + 5 ≤ 0
<=> 4x2 - 4x + 1 + 4 ≤ 0
<=> ( 2x - 1 )2 + 4 ≤ 0
<=> ( 2x - 1 )2 ≤ -4 ( vô lí )
=> BPT vô nghiệm ( đpcm )
f) x2 + x + 1 ≤ 0
<=> x2 + 2.1/2.x + 1/4 + 3/4 ≤ 0
<=> ( x + 1/2 )2 + 3/4 ≤ 0
<=> ( x + 1/2 )2 ≤ -3/4 ( vô lí )
=> BPT vô nghiệm ( đpcm )
a,Ta có :\(x^2+2x+2=\left(x^2+2x+1\right)+1\)
\(=\left(x+1\right)^2+1\)
Do \(\left(x+1\right)^2\ge0< =>\left(x+1\right)^2+1\ge1\)
=> BPT vô nghiệm
b,Ta có :\(4x^2-4x+5=\left[\left(2x\right)^2-2.2x+1\right]+4\)
\(=\left(2x-1\right)^2+4\)
Do \(\left(2x-1\right)^2\ge0< =>\left(2x-1\right)^2+4\ge4\)
=> BPT vô nghiệm
c,Ta có :\(x^2+x+1=x^2+x+\frac{1}{4}+\frac{3}{4}\)
\(=\left(x^2+2.\frac{1}{2}.x+\frac{1}{2}^2\right)+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\)
Do \(\left(x+\frac{1}{2}\right)^2\ge0< =>\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)
=> BPT vô nghiệm
Có: \(1983⋮3\)
=> Nếu số có tổng các chữ số là 1983 là 1 SCP thì SCP đó phải chia hết cho 9
Nhưng 1983 ko chia hết cho 9
=> Số có tổng các chữ số là 1983 ko phải là 1 SCP.
Có: 1984 chia 3 dư 1
=> Số có tổng các chữ số là 1984 có thể là 1 số chính phương
(CÓ THỂ CHỨ KO PHẢI LÀ 100%).
\(Q=\left(x^2+x+5\right)\left(5-x^2-x\right)=25-\left(x^2+x\right)^2\le25\)
Dấu = xảy ra khi \(x^2+x=0\Leftrightarrow\orbr{\begin{cases}x=-1\\x=0\end{cases}}\)
=> \(-Q=\left(x^2+x+5\right)\left(x^2+x-5\right)\)
=> \(-Q=\left(x^2+x\right)^2-25\)
Có: \(\left(x^2+x\right)^2\ge0\forall x\)
=> \(-Q\ge-25\forall x\)
=> \(Q\le25\)
DẤU "=" XẢY RA <=> \(\left(x^2+x\right)^2=0\)
<=> \(x^2+x=0\)
<=> \(\orbr{\begin{cases}x=0\\x=-1\end{cases}}\)
VẬY Q MAX = 25 <=> \(\orbr{\begin{cases}x=0\\x=-1\end{cases}}\)
( x - 3 )2 + ( x - 2 )2
= x2 - 6x + 9 + x2 - 4x + 4
= 2x2 - 10x + 13
= 2( x2 - 5x + 25/4 ) + 1/2
= 2( x - 5/2 )2 + 1/2
\(2\left(x-\frac{5}{2}\right)^2\ge0\forall x\Rightarrow2\left(x-\frac{5}{2}\right)^2+\frac{1}{2}\ge\frac{1}{2}\)
Dấu " = " xảy ra <=> x - 5/2 = 0 => x = 5/2
Vậy GTNN của biểu thức = 1/2 , đạt được khi x = 5/2
Mình làm và sửa đề đúng luôn nhé !
1) \(36x^2-a^2+10a-25\)
\(=\left(6x\right)^2-\left(a^2-10a+25\right)\)
\(=\left(6x\right)^2-\left(a-5\right)^2\)
\(=\left(6x-a+5\right)\left(6x+a-5\right)\)
2) \(4x^2-4xy+y^2-25a^2+10a-1\)
\(=\left(2x-y\right)^2-\left(5a-1\right)^2\)
\(=\left(2x-y-5a+1\right)\left(2x-y+5a-1\right)\)
3) \(m^2-6m+9-x^2+4xy-4y^2\)
\(=\left(m-3\right)^2-\left(x-2y\right)^2\)
\(=\left(m-3-x+2y\right)\left(m+3-x+2y\right)\)
Đơn giản mà.
Nếu tồn tại một số chính phương có tổng các chữ số = 5
\(\Rightarrow\)Số chính phương đó chia 3 dư 2
Mà số chính phương chỉ có thể có số dư là 0 hoặc 1 khi chia cho 3
Vậy: Một số chính phương không thể có tổng các chữ số bằng 5.
nếu tất cả xi chẵn thì xi4 chẵn nên \(x_1^4+x_2^4+x_3^4+...+x_8^4\)chẵn , không thể bằng 2015
nếu có \(x_k\)lẻ \(x_k=2m_k+1,m_k\inℤ,x_k^4=\left(2m_k+1\right)^4=16m_k^3\left(m_k+2\right)+8m_k\left(3m_k+1\right)+1\)
nếu mk chẵn thì \(8m_k\left(3m_k+1\right)⋮16\)
mk lẻ thì \(3m_k+1\)chẵn \(\Rightarrow8m_k\left(3m_k+1\right)⋮16\)
do đó \(x_k^4\)chia cho 16 có số dư là 1
vì vậy \(x_1^4+x_2^4+x_3^4+...+x_8^4\)chia cho 16 có số dư tối đa là 8
còn 2015=125.16+15 khi chia 16 có số dư là 15
vậy không thể xảy ra \(x_1^4+x_2^4+x_3^4+....+x_8^4=2015,x_i\inℤ\)
Với \(x\in Z\)thì: \(x^2\)chia 16 dư 0 hoặc 1. (Tự cm)
\(\Rightarrow x^4=\left(x^2\right)^2:16\)dư 0 hoặc 1
\(\Rightarrow x_1^4+x_2^4+x_3^4+...+x_8^4\)chia 16 sẽ nhận một trong các số dư 0;1;2...;8
Mà \(2015:16\)dư 15\(\Rightarrow\)Phương trình vô nghiệm.
\(x^2+x+6=x.\left(x+1\right)+6\)
x^2 + x + 6
<=> x ( x + 1) +6