K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

A.2

......

Chúc học tốt

31 tháng 12 2019

lớp 9 làm quen không bạn ^^

1 tháng 1 2020

Chứng minh : a3 + b3 + c3 = 3abc \(\Rightarrow\orbr{\begin{cases}a+b+c=0\left(tm\right)\\a=b=c\left(loai\right)\end{cases}}\)

Rút gọn P

\(P=\frac{a-b}{c}+\frac{b-c}{a}+\frac{c-a}{b}=\frac{ab\left(a-b\right)+bc\left(b-c\right)+ac\left(c-a\right)}{abc}\)

Xét : ab(a-b) + bc(b-c) + ac(c-a) = ab[-(b-c)-(c-a)] + bc(b-c) + ac(c-a)

= (b-c)(bc-ab) + (c-a)(ac-ab) = b(b-c)(c-a) + a(c-a)(c-b) = (c-a)(c-b)(a-b)

\(\Rightarrow P=\frac{\left(c-a\right)\left(c-b\right)\left(a-b\right)}{abc}\)

Rút gọn Q

Đặt a - b = z ; b-c = x ; c - a = y

\(\Rightarrow\)x- y = a + b - 2c = -c - 2c = -3c              ( do a + b + c = 0 )

y - z = -3a ; z - x = -3b

\(\Rightarrow\)\(-3Q=\frac{\left(y-z\right)}{x}+\frac{\left(z-x\right)}{y}+\frac{\left(x-y\right)}{z}\)

Làm tương tự như rút gọn P, ta có : 

\(-3Q=\frac{\left(x-y\right)\left(z-y\right)\left(z-x\right)}{xyz}=\frac{-\left(-3a\right)\left(-3b\right)\left(-3c\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}=\frac{27abc}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}=\frac{-27abc}{\left(a-b\right)\left(c-b\right)\left(c-a\right)}\)

\(\Rightarrow Q=\frac{9abc}{\left(a-b\right)\left(c-b\right)\left(c-a\right)}\)

\(\Rightarrow PQ=9\)

31 tháng 12 2019

\(T=\sqrt{x^2-x+2}+\sqrt{x^2+x+2}\)

\(T^2=x^2-x+2+x^2+x+2+2\sqrt{\left(x^2-x+2\right)\left(x^2+x+2\right)}\)

\(T^2=2x^2+4+2\sqrt{\left(x^2+2\right)^2-x^2}\)

\(T^2=2x^2+4+2\sqrt{x^4+4x^2+4-x^2}\)

\(T^2=2x^2+4+2\sqrt{x^4+3x^2+4}\)

Nhận xét : \(2x^2\ge0\forall x\)

\(x^4+3x^2+4=x^2\left(x^2+3\right)+4\)

Có : \(x^2\ge0,x^2+3\ge0\forall x\)nên 

\(\Rightarrow x^2\left(x^2+3\right)\ge0\forall x\)

Cho nên \(x^4+3x^2+4\ge4\)

Vậy \(T^2=2x^2+4+2\sqrt{x^4+3x^2+4}\ge4+2\sqrt{4}=4+4=8\)

Do \(T^2\ge8\)nên :

\(\Rightarrow A\ge2\sqrt{2}\)

Dấu " = " xảy ra \(\Leftrightarrow x=0\)

31 tháng 12 2019

Áp dụng bất đẳng thức Cauchy - Schwarz

\(\Rightarrow A\ge3\sqrt[3]{\frac{1}{\sqrt[3]{\left(a+7b\right)\left(b+7c\right)\left(c+7a\right)}}}\left(1\right)\)

Áp dụng bất đẳng thức Cauchy - Schwarz

\(\Rightarrow\sqrt[3]{\left(a+7b\right)\left(b+7c\right)\left(c+7a\right)}\le\frac{8\left(a+b+c\right)}{3}=8\)

\(\Rightarrow\frac{1}{\sqrt[3]{\left(a+7b\right)\left(b+7c\right)\left(c+7a\right)}}\ge\frac{1}{8}\)

\(\Rightarrow3\sqrt[3]{\frac{1}{\sqrt[3]{\left(a+7b\right)\left(b+7c\right)\left(c+7a\right)}}}\ge3\sqrt[3]{\frac{1}{8}}=\frac{3}{2}\left(2\right)\)

Từ (1) và (2) 

\(\Rightarrow A\ge\frac{3}{2}\)

\(\Rightarrow A_{min}=\frac{3}{2}\)

Dấu " = " xảy ra khi \(a=b=c=1\)

31 tháng 12 2019

Áp dụng BĐT Cauchy cho 2 só dương ta có :
\(a+1\ge2\sqrt{a}\)

\(b+1\ge2\sqrt{b}\)

\(a+c\ge2\sqrt{ac}\)

\(b+c\ge2\sqrt{bc}\)

Nhân vế theo vế các BĐT cùng chiều trên ta được :

\(\left(a+1\right)\left(b+1\right)\left(a+c\right)\left(b+c\right)\ge16\sqrt{a^2b^2c^2}=16abc\)

Dấu " = " xảy ra \(\Leftrightarrow\hept{\begin{cases}a=1\\b=1\\c=a\end{cases}}\)

                                     b =c

\(\Leftrightarrow a=b=c=1\)

     Vậy \(\left(a+1\right)\left(b+1\right)\left(a+c\right)\left(b+c\right)\ge16abc\) với a,b,c dương 

Dấu " = " xảy ra khi \(a=b=c=1\)

Chúc bạn học tốt !!!

31 tháng 12 2019

Trước tiên chứng minh BĐT \(\frac{x^3+1}{x+2}\ge\frac{7}{18}x^2+\frac{5}{18}\left(x>0\right)\)

\(\Leftrightarrow18\left(x^3+1\right)\ge\left(x+2\right)\left(7x^2+5\right)\)

\(\Leftrightarrow\left(x-1\right)^2\left(11x+8\right)\ge0\)(luôn đúng với x>0)

Dấu "=" xảy ra khi x = 1

Áp dụng công thức trên ta có:

Cho x lần lượt là \(\frac{a}{b};\frac{b}{c};\frac{c}{a}\)

\(\Leftrightarrow\frac{a^3+b^3}{a+2b}\ge\frac{7a^2}{18}+\frac{5b^2}{18};\frac{b^3+c^3}{a+2b}\ge\frac{7b^2}{18}+\frac{5c^2}{18};\frac{c^3+a^3}{a+2b}\ge\frac{7c^2}{18}+\frac{5a^2}{18}\)

Từ đẳng thức trên suy ra \(A\ge\frac{12+\left(a^2+b^2+c^2\right)}{18}=2\)

Vậy MinA=2 khi a=b=c=1

31 tháng 12 2019

Cần cm: \(\frac{a^3+b^3}{a+2b}\ge\frac{7}{18}a^2+\frac{5}{18}b^2\)

bđt \(\Leftrightarrow\)\(11a^3+8b^3-14a^2b-5ab^2\ge0\)\(\Leftrightarrow\)\(\left(a-b\right)^2\left(11a+8b\right)\ge0\) đúng với a,b>0 

\(A\ge\frac{2}{3}\left(a^2+b^2+c^2\right)=2\)

Dấu "=" xảy ra khi a=b=c=1