K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 8 2020

Bạn tham khảo tại link này nha, mình giải rất chi tiết cả 3 câu a; b; c rồi đó nhaaaaaa !!!!!

Link nè: https://olm.vn/hoi-dap/detail/261219264881.html

23 tháng 8 2020

Bài làm:

a) Ta có: \(-4x^2-4x-2=-\left(4x^2+4x+1\right)-1\)

\(=-\left(2x+1\right)^2-1\le-1< 0\left(\forall x\right)\)

=> đpcm

b) \(x^2+4y^2+z^2-2x-6z+8y+15\)

\(=\left(x^2-2x+1\right)+\left(4y^2-8y+4\right)+\left(z^2-6z+9\right)+1\)

\(=\left(x-1\right)^2+4\left(y-1\right)^2+\left(z-3\right)^2+1\ge1>0\left(\forall x\right)\)

=> đpcm

23 tháng 8 2020

a) Ta có: \(-4x^2-4x-2=-\left(4x^2+4x+1\right)-1\)

                                           \(=-\left(2x+1\right)^2-1\)

    Vì \(-\left(2x+1\right)^2\le0\forall x\)\(\Rightarrow\)\(-\left(2x+1\right)^2-1\le-1\forall x\)

              \(\Rightarrow\)\(-\left(2x+1\right)^2-1< 0\forall x\)

              \(\Rightarrow\)\(-4x^2-4x-2< 0\forall x\)( ĐPCM )

b) Ta có: \(x^2+4y^2+z^2-2x-6z+8y+15\)

        \(=\left(x^2-2x+1\right)+\left(4y^2+8y+4\right)+\left(z^2-6z+9\right)+1\)

        \(=\left(x-1\right)^2+\left(2y+2\right)^2+\left(z-3\right)^2+1\)

    Vì \(\hept{\begin{cases}\left(x-1\right)^2\ge0\forall x\\\left(2y+2\right)^2\ge0\forall y\\\left(z-3\right)^2\ge0\forall z\end{cases}}\)\(\Rightarrow\)\(\left(x-1\right)^2+\left(2y+2\right)^2+\left(z-3\right)^2\ge0\forall x,y,z\)

          \(\Rightarrow\)\(\left(x-1\right)^2+\left(2y+2\right)^2+\left(z-3\right)^2+1\ge1\forall x,y,z\)

          \(\Rightarrow\)\(\left(x-1\right)^2+\left(2y+2\right)^2+\left(z-3\right)^2+1>0\forall x,y,z\)( ĐPCM )

23 tháng 8 2020

đkxđ: \(a\ne\pm3\)

\(P=\left(\frac{a}{a+3}+\frac{3-a}{a+3}+\frac{a^2+3a+9}{a^2-9}\right)\div\frac{3}{a+3}\)

\(P=\left[\frac{3}{a+3}+\frac{a^2+3a+9}{\left(a-3\right)\left(a+3\right)}\right].\frac{a+3}{3}\)

\(P=\frac{3\left(a-3\right)+a^2+3a+9}{\left(a-3\right)\left(a+3\right)}.\frac{a+3}{3}\)

\(P=\frac{a^2+6a}{3\left(a-3\right)}\)

Đề nghị xem lại đề

23 tháng 8 2020

Bài làm:

Ta có: \(x^2-22x+127=\left(x^2+22x+121\right)+6=\left(x+11\right)^2\ge6\left(\forall x\right)\)

Áp dụng bất đẳng thức Bunhiacopxki ta có:

\(\left(\sqrt{x-2}+\sqrt{20-x}\right)^2\le\left(1^2+1^2\right)\left[\left(\sqrt{x-2}\right)^2+\left(\sqrt{20-x}\right)^2\right]\)

\(=2\left(x-2+20-x\right)=2.18=36\)

\(\Rightarrow\sqrt{x-2}+\sqrt{20-x}\le\sqrt{36}=6\)

Dấu "=" xảy ra khi: \(\hept{\begin{cases}\left(x-11\right)^2\\x-2=20-x\end{cases}}\Rightarrow x=11\)

23 tháng 8 2020

đkxđ: \(2\le x\le22\) 

23 tháng 8 2020

Bài đâu

bạn vào câu hỏi của tôi sửa đề bài đi nhé 

cảm ơn

23 tháng 8 2020

Ta có E = 2x2 + 6x - 5

= 2(x2 + 3x + 2,25) - 9,5

= 2(x + 1,5)2 - 9,5 \(\ge\)-9,5

Dấu bằng xảy ra <=> x + 1,5 = 0 => x = -1,5

Vậy MIN E = -9,5 <=> x = -1,5

22 tháng 8 2020

a) x = [((n + 1)(n + 4)].[(n + 2)(n + 3)] + 1

= (n2 + 5n + 4)(n2 + 5n + 6) + 1 

= (n2 + 5n + 5 - 1)(n2 + 5n + 5 + 1) + 1

= (n2 + 5n + 5)2 - 12 + 1 = (n2 + 5n + 5)2 (đpcm)

b) y = [n(n + 9)].[(n + 3)(n + 6)] + 81 

= (n2 + 9n).(n2 + 9n + 18) + 81

= (n2 + 9n + 9 - 9)(n2 + 9n + 9 + 9) + 81

= (n2 + 9n + 9)2 - 92 + 81 = (n2 + 9n + 9)2 (đpcm)

22 tháng 8 2020

a) \(x=\left(n+1\right)\left(n+2\right)\left(n+3\right)\left(n+4\right)+1\)    

\(=\left(n+1\right)\left(n+4\right)\left(n+2\right)\left(n+3\right)+1\)  

\(=\left(n^2+5n+4\right)\left(n^2+5n+6\right)+1\)   ( 1 ) 

Đặt \(t=n^2+5n\)     

\(\left(1\right)\Leftrightarrow=\left(t+4\right)\left(t+6\right)+1\)   

\(=t^2+10+24+1\)    

\(=t^2+10t+25\)          

\(=\left(t+5\right)^2\)      

Vậy x là số chính phương 

b)  \(y=n\left(n+3\right)\left(n+6\right)\left(n+9\right)+81\)          

\(=n\left(n+9\right)\left(n+3\right)\left(n+6\right)+81\)    

\(=\left(n^2+9n\right)\left(n^2+9n+18\right)+81\)    ( 1 ) 

Đặt \(a=n^2+9n\)   

\(\Leftrightarrow\left(1\right)=a\left(a+18\right)+81\)       

\(=a^2+18a+81\)         

\(=\left(a+9\right)^2\)               

Vậy y là số chính phương 

22 tháng 8 2020

A B C D

Ta có: Vì AB // CD

=> \(\widehat{D}=180^0-\widehat{A}=180^0-30^0=150^0\)

Vì \(\widehat{B}+\widehat{C}=180^0\Leftrightarrow2\widehat{C}+\widehat{C}=180^0\Leftrightarrow3\widehat{C}=180^0\)

\(\Rightarrow\widehat{C}=60^0\Rightarrow\widehat{B}=120^0\)

C1 : Cardano (mk chưa học )

C2 : Mode set up -> 5 -> ax^3 + bx^2 + cx + d = 0 

PT <=> \(x_1=-1,209...;x_2=2,104....\)

22 tháng 8 2020

dùng lượng giác hóa cũng được các bạn nhé 

22 tháng 8 2020

a) \(5\left(x-2\right)>3\left(x-4\right)\)

\(\Leftrightarrow5x-10>3x-12\)

\(\Leftrightarrow2x>-2\)

\(\Rightarrow x>-1\)

b) \(7\left(x+3\right)< 9\left(x-1\right)\)

\(\Leftrightarrow7x+21< 9x-9\)

\(\Leftrightarrow2x>30\)

\(\Rightarrow x>15\)

22 tháng 8 2020

c) Vì \(x^2+x+1=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\left(\forall x\right)\)

=> \(2x-5>0\Rightarrow2x>5\Rightarrow x>\frac{5}{2}\)

d) \(x^2-2x+5=\left(x-1\right)^2+4>0\left(\forall x\right)\)

\(\Rightarrow3x-8< 0\Rightarrow3x< 8\Rightarrow x< \frac{8}{3}\)