cho tam giác ABC vuông tại A có đường cao AH
a) biết BH=3,6cm, CH=6,4cm. tính độ dài các đoạn thẳng AH, AB, AC, BC và các góc B,C
b) gọi D,E lần lượt là hình chiếu của H trên AB, AC. chứng minh rằng AH2 = AD.AB , từ đó suy ra AD.AB = AE.AC
giải chi tiết giúp mình ạ!!
a) \(AH^2=BH.CH=3,6.6,4=23,04\)
\(\Rightarrow AH=4,8\left(cm\right)\)
\(AC^2=AH^2+HC^2=23,04+40,96=64\)
\(\Rightarrow AC=8\left(cm\right)\)
\(AB^2=AH^2+BH^2=23,04+12,96=36\)
\(\Rightarrow AB=6\left(cm\right)\)
\(BC=BH+CH=3,6+6,4=10\left(cm\right)\)
\(tanB=\dfrac{8}{6}=\dfrac{4}{3}\Rightarrow B=53^o\)
\(\Rightarrow C=90^o-53^o=37^o\)
b) Xét Δ vuông ABH, có đường cao DH ta có :
\(AH^2=AD.AB\left(1\right)\)
Tương tự Δ vuông ACH :
\(AH^2=AE.AC\left(2\right)\)
\(\left(1\right),\left(2\right)\Rightarrow AD.AB=AE.AC\)