Tìm a và b để đa thức A chia hết cho đa thức B:
a) A=x3 + ax2 + 2x +b; B=x2 + 2x+3
b) A= x4 - 3x3 + bx2 + ax +b; B= x2 -1
Đặt phép chia nha chứ kh phải đặt hàng ngang nha
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=15-8x-x^2=-\left(x+4\right)^2+31\)
Vì \(\left(x+4\right)^2\ge0\forall x\)\(\Rightarrow-\left(x+4\right)^2+31\le31\)
Dấu "=" xảy ra \(\Leftrightarrow-\left(x+4\right)^2=0\Leftrightarrow x=-4\)
Vậy maxA = 31 <=> x = - 4
\(B=4x-x^2+2=-\left(x-2\right)^2+6\)
Vì \(\left(x-2\right)^2\ge0\forall x\)\(\Rightarrow-\left(x-2\right)^2+6\le6\)
Dấu "=" xảy ra \(\Leftrightarrow-\left(x-2\right)^2=0\Leftrightarrow x=2\)
Vậy maxB = 6 <=> x = 2
a) \(A=15-8x-x^2=-\left(x^2+8x+16\right)-1\)
\(=-\left(x+4\right)^2-1\le-1\left(\forall x\right)\)
Dấu "=" xảy ra khi: \(-\left(x+4\right)=0\Rightarrow x=-4\)
b) \(B=4x-x^2+2=-\left(x^2-4x+4\right)+6\)
\(=-\left(x-2\right)^2+6\le6\left(\forall x\right)\)
Dấu "=" xảy ra khi: \(-\left(x-2\right)^2=0\Rightarrow x=2\)
c) Trang nghĩ nên sửa đề nhé:
\(C=-x^2-y^2+4x+4y+2\)
\(C=-\left(x^2-4x+4\right)-\left(y^2-4y+4\right)+10\)
\(C=-\left(x-2\right)^2-\left(y-2\right)^2+10\le10\left(\forall x\right)\)
Dấu "=" xảy ra khi: \(\hept{\begin{cases}-\left(x-2\right)^2=0\\-\left(y-2\right)^2=0\end{cases}}\Rightarrow x=y=2\)
a) \(A=\left(3x-2\right)\left(3x+2\right)-\left(3x+1\right)^2-3.\left(-2x-1\right)\)
\(=\left(3x\right)^2-4-\left(9x^2+6x+1\right)+6x+3\)
\(=9x^2-4-9x^2-6x-1+6x+3\)
\(=-2\) không phụ thuộc vào x
b) \(B=\left(x+1\right)\left(x-1\right)-\left(x-2\right)^2-4.\left(x+3\right)\)
\(=x^2-1-\left(x^2-4x+4\right)-\left(4x+12\right)\)
\(=x^2-1-x^2+4x-4-4x-12\)
\(=-17\)không phụ thuộc vào x.
\(\text{a)}\Rightarrow x-1-x-1-x+2=5\)
\(\Rightarrow-x=5\)
\(\Rightarrow x=-5\)
\(\text{Vậy x=-5}\)
\(\text{b)}\left(2x-1\right)^2-\left(2x+3\right)^2=7\)
\(\Rightarrow\left(4x^2-4x+1\right)-\left(4x^2+12x+9\right)=7\)
\(\Rightarrow4x^2-4x+1-4x^2-12x-9=7\)
\(\Rightarrow-16x-8=7\)
\(\Rightarrow-16x=15\)
\(\Rightarrow x=\frac{-15}{16}\)
\(\text{Vậy }x=\frac{-15}{16}\)
\(\text{c)}\Rightarrow16x^2-9-\left(16x^2-8x+1\right)=8\)
\(\Rightarrow-9+8x-1=8\)
\(\Rightarrow8x=18\)
\(\Rightarrow x=\frac{18}{8}=\frac{9}{4}\)
\(\text{Vậy }x=\frac{9}{4}\)
\(\text{Phần d số rất lẻ, có thể bạn chép sai đề nên mình ko chữa nha~}\)
\(\text{a)}25x^2+30x+9\) \(\text{e)}4x^2-4x+1\)
\(\text{b)}16x^2-24x+9\) \(\text{f)}9x^2-12x+4\)
\(\text{c)}8x^3+60x^2+150x+125\) \(\text{g)}x^3-3x^2+3x-1\)
\(\text{d)}8x^3-36x^2+54x-27\) \(\text{h)}27x^3+27x^2+9x+1\)
Bài làm :
Ta có :
\(Q=x^3+y^3-2x^2-2y^2+3xy\left(x+y\right)-4xy+3\left(x+y\right)+10\):
\(Q=x^3+y^3-2x^2-2y^2+3x^2y+3xy^2-4xy+3\left(x+y\right)+10\)
\(Q=\left(x^3+y^3+3x^2y+3xy^2\right)-\left(2x^2+2y^2+4xy\right)+3\left(x+y\right)+10\)
\(Q=\left(x+y\right)^3-2\left(x+y\right)^2+3\left(x+y\right)+10\)
Thay x+y=5 vào biểu thức trên ; ta được :
\(Q=5^3-2.5^2+3.5+10=125-50+15+10=100\)
Vậy Q=100
\(Q=x^3+y^3-2x^2-2y^2+3xy\left(x+y\right)-4xy+3\left(x+y\right)+10\)
\(\Leftrightarrow Q=x^3+y^3-2x^2-2y^2+3x^2y+3xy^2-4xy+3\left(x+y\right)+10\)
\(\Leftrightarrow Q=\left(x^3+3x^2y+3xy^2+y^3\right)-\left(2x^2+4xy+2y^2\right)+3\left(x+y\right)+10\)
\(\Leftrightarrow Q=\left(x+y\right)^3-2\left(x+y\right)^2+3\left(x+y\right)+10\)
Thay x + y = 5 vào pt ta được :
\(Q=5^3-2.5^2+3.5+10=125-50+15+10=100\)
Vậy Q = 100 <=> x + y = 5
\(=\left(80-75\right)\left(80+75\right)+\left(70-65\right)\left(75+65\right)+...+\left(10-5\right)\left(10+5\right)\)
\(=5\cdot155+5\cdot135+..+5\cdot15\)
\(=5\cdot\left(155+135+...+15\right)\)
\(=5\cdot\left(155+15+135+35+115+55+95+75\right)\)
\(=5\cdot\left(170\cdot4\right)\)
\(=5\cdot680=3400\)
Cho phân thức : \(\frac{x^2+y^2-z^2}{2xy}+\frac{y^2+z^2-x^2}{2yz}+\frac{x^2+z^2-y^2}{2xz}=1\)
a.CMR trong ba sốx,y,z có một số bằng tổng hai số kia
b.CMR trong phân thức đã cho,có một phân thức bằng -1,hai phân thức còn lại bằng 1
Lời giải :
a) Để chứng tỏ trong 3 số x,y,z có một số bằng tổng hai số kia,ta sẽ chứng minh (x + y - z)(x + z - y)(y + z - x) = 0 . Từ giả thiết ta có :
(x2 + y2 - z2)z + (y2 + z2 - x2)x + (z2 + x2 - y2)y = 2xyz
Thêm bớt 2xyz ta có :
(x2 + y2 - z2 + 2xy)z + (y2 + z2 - x2 - 2yz)x + (z2 +x2 - y2 - 2xz)y = 0
=> (x + y + z)(x + y - z)z + (y - z + x)(y - z - x)x + (z - x + y)(z - x + y)y = 0
Đặt x - y - z làm thừa số chung ở vế trái:
\(\left(x+y-z\right)\left(y^2-x^2+2xy-y^2\right)=0\)
=> \(\left(x+y-z\right)\left(z+x-y\right)\left(z-x+y\right)=0\)
Nếu x + y - z = 0 => z = x+ y
Nếu z + x - y = 0 thì y = x + z
Nếu z - x + y = 0 thì x = y + z
b) Trường hợp : z = x + y
\(\frac{x^2+y^2-z^2}{2xy}=\frac{x^2+y^2-\left(x+y\right)^2}{2xy}=\frac{x^2+y^2-x^2-2xy-y^2}{2xy}=\frac{-2xy}{2xy}=-1\)
\(\frac{y^2+z^2-x^2}{2yz}=\frac{y^2+x^2-2xy-y^2-x^2}{2y\left(x+y\right)}=\frac{2y\left(x+y\right)}{2y\left(x+y\right)}=1\)
\(\frac{z^2+x^2-y^2}{2xz}=\frac{x^2+2xy+y^2+x^2-y^2}{2x\left(x+y\right)}=\frac{2x\left(x+y\right)}{2x\left(x+y\right)}=1\)
Trường hợp y = x + z
\(\frac{x^2+y^2-z^2}{2xy}=\frac{x^2+\left(x+z\right)^2-z^2}{2x\left(x+z\right)}=\frac{2xz+2x^2}{2x\left(x+z\right)}=\frac{2x\left(x+z\right)}{2x\left(x+z\right)}=1\)
\(\frac{y^2+z^2-x^2}{2yz}=\frac{\left(x+z\right)^2+z^2-x^2}{2\left(x+z\right)z}=\frac{2z^2+2xz+x^2-x^2}{2z\left(x+z\right)}=\frac{2z\left(x+z\right)}{2z\left(x+z\right)}=1\)
\(\frac{z^2+x^2-y^2}{2xz}=\frac{z^2+x^2-\left(x+z\right)^2}{2xz}=\frac{-2xz}{2xz}=-1\)
Tương tự
Lần sau phải sửa lại đề bài cho thật kĩ nhé :)
a) Mình không rảnh đặt phép chia, hệ số bất định vậy.
Giả sử khi A chia hết cho B thì sẽ được thương là x+c
\(\Rightarrow A=B\left(x+c\right)\)
\(\Leftrightarrow x^3+ax^2+2x+b=\left(x^2+2x+3\right)\left(x+c\right)\)
\(\Leftrightarrow x^3+ax^2+2x+b=x^3+\left(2+c\right)x^2+\left(3+2c\right)x+3c\)
\(\Leftrightarrow\hept{\begin{cases}a=2+c\\2=3+2c\\b=3c\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}a=\frac{3}{2}\\b=\frac{-3}{2}\\c=\frac{-1}{2}\end{cases}}\)
KL: \(a=\frac{3}{2};b=\frac{-3}{2}\)
b) Giải tương tự.