K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 2 2020

COD= 90 độ nha

gọi vận tốc xe chậm và nhanh là x,y (km/h) với x,y>0

→độ dài AB:5x+5y=400

nếu xe chậm xuất phát trước 40p thì 2 xe gặp nhau sau 5h22p

→thời gian xe chậm đi là :5h22p=161/30h

Thời gian xe nhanh đi:5h22p -40p =4h42p =47/10h

→Độ dài AB :161/30x  +47/10y=400

theo bài ra ta có hệ:  5x+5y=400   và  161/30x  +47/10y=400

                              →   x+y=80       và  161x+141y=12000

                              →x=36  ,y=44 (km/h)

Đề đúng: Cho a,b,c thỏa mãn a+b+c>0; ab+bc+ac>0; abc>0. Chứng minh a,b,c>0

Vì abc>0 nên có ít nhất 1 số lớn hơn 0

Vai trò của a, b, c như nhau nên chọn a>0

TH1: b<0;c<0 

\(\Rightarrow b+c>-a\Rightarrow\left(b+c\right)^2< -a\left(b+c\right)\)

\(\Rightarrow b^2+2bc+c^2< -ab-ac\)

\(\Rightarrow b^2+bc+c^2< -\left(ab+bc+ca\right)\)(vô lí)

TH2: b>0, c>0 thì a>0( luôn đúng)

Vậy a, b, c >0

11 tháng 2 2020

\(=\frac{1}{\sqrt{2}}+\frac{\sqrt{5}-1}{\left(\sqrt{5}-1\right)\sqrt{2}}-\sqrt{\left(\sqrt{2}-1\right)^2}\)

\(=\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-|\sqrt{2}-1|\)

\(=2.\frac{1}{\sqrt{2}}-\left(\sqrt{2}-1\right)\)    \(=\sqrt{2}-\sqrt{2}+1=1\)

11 tháng 2 2020

\(B=\frac{x\sqrt{x}+1}{x-1}-\frac{x-1}{\sqrt{x}+1}\)

\(B=\frac{\left(x\sqrt{x}+1\right)\left(\sqrt{x}+1\right)}{\left(x-1\right)\left(\sqrt{x}+1\right)}-\frac{\left(x-1\right)\left(x-1\right)}{\left(\sqrt{x}+1\right)\left(x-1\right)}\)

\(B=\frac{\left(x\sqrt{x}+1\right)\left(\sqrt{x}+1\right)-\left(x-1\right)^2}{\left(x-1\right)\left(\sqrt{x}+1\right)}\)

\(B=\frac{x^2+x\sqrt{x}+\sqrt{x}+1-x^2+2x-1}{\left(x-1\right)\left(\sqrt{x}+1\right)}\)

\(B=\frac{x\sqrt{x}+\sqrt{x}+2x}{\left(x-1\right)\left(\sqrt{x}+1\right)}\)

\(B=\frac{\sqrt{x}\left(x+1+2\sqrt{x}\right)}{\left(x-1\right)\left(\sqrt{x}+1\right)}\)

9 tháng 7 2020

tiếp tục của bạn @Bastkoo nhé

\(B=\frac{\sqrt{x}\left(x+2\sqrt{x}+1\right)}{\left(x-1\right)\left(\sqrt{x}+1\right)}\)

\(< =>B=\frac{\sqrt{x}\left(\sqrt{x}+1\right)^2}{\left(x-1\right)\left(\sqrt{x}+1\right)}\)

\(< =>B=\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{x-1}=\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(< =>B=\frac{\sqrt{x}}{\sqrt{x}-1}\)