K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 9 2020

\(A=3x^2-x+6x-2-3x^2-3x-2x+7\)  

\(=5\)  

Vậy A không phụ thuộc vào x  

\(B=\left(2x\right)^2-3^2-3x-4x^2+3x+1\) 

\(=4x^2-9-3x-4x^2+3x+1\) 

\(=-8\)  

Vậy B không phụ thuộc vào biến x 

6 tháng 9 2020

A = ( x + 2 )( 3x - 1 ) - x( 3x + 3 ) - 2x + 7 

= 3x2 + 5x - 2 - 3x2 - 3x - 2x + 7

= 5

Vậy A không phụ thuộc vào biến ( đpcm )

B = ( 2x - 3 )( 2x + 3 ) - x( 3 + 4x ) + 3x + 1

= [ ( 2x )2 - 32 ] - 3x - 4x2 + 3x + 1

= 4x2 - 9 - 4x2 + 1

= -8

Vậy B không phụ thuộc vào biến ( đpcm ) 

6 tháng 9 2020

\(\frac{2,25\cdot10^{16}}{3\cdot10^5}\) 

\(=\frac{\frac{9}{4}\cdot10^{16}}{3\cdot10^5}\)  

\(=\frac{3}{4}\cdot10^{11}\)

6 tháng 9 2020

G = x2 - 3x + 5

= ( x2 - 3x + 9/4 ) + 11/4

= ( x - 3/2 )2 + 11/4 ≥ 11/4 ∀ x

Đẳng thức xảy ra <=> x - 3/2 = 0 => x = 3/2

=> MinG = 11/4 <=> x = 3/2

H = ( 2x - 1 )2 + ( x + 2 )2

= 4x2 - 4x + 1 + x2 + 4x + 4

= 5x2 + 5 ≥ 5 ∀ x

Đẳng thức xảy ra <=> 5x2 = 0 => x = 0

=> MinH = 5 <=> x = 0

I = x2 - 2x + y2 - 4y + 10

= ( x2 - 2x + 1 ) + ( y2 - 4y + 4 ) + 5

= ( x - 1 )2 + ( y - 2 )2 + 5 ≥ 5 ∀ x,y

Đẳng thức xảy ra <=> \(\hept{\begin{cases}x-1=0\\y-2=0\end{cases}}\Rightarrow\hept{\begin{cases}x=1\\y=2\end{cases}}\)

=> MinI = 5 <=> x = 1 ; y = 2

K = x2 + 5y2 - 2xy + 4y + 3

= ( x2 - 2xy + y2 ) + ( 4y2 + 4y + 1 ) + 2

= ( x - y )2 + ( 2y + 1 )2 + 2 ≥ 2 ∀ x, y

Đẳng thức xảy ra <=> \(\hept{\begin{cases}x-y=0\\2y+1=0\end{cases}\Rightarrow}x=y=-\frac{1}{2}\)

=> MinK = 2 <=> x = y = -1/2

E = 2x2 + y2 + 2xy - 4x + 14

= ( x2 + 2xy + y2 ) + ( x2 - 4x + 4 ) + 10

= ( x + y )2 + ( x - 2 )2 + 10 ≥ 10 ∀ x, y

Đẳng thức xảy ra <=> \(\hept{\begin{cases}x+y=0\\x-2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2\\y=-2\end{cases}}\)

=> MinE = 10 <=> x = 2 ; y = -2

7 tháng 9 2020

Đặt \(a+2=x,b+2=y,c+2=z,\)\(x,y,z\ge2\)

Đề bài \(\Leftrightarrow x+y+z-6\ge\frac{x-y}{y}+\frac{y-z}{z}+\frac{z-x}{x}=\frac{x}{y}-1+\frac{y}{z}-1+\frac{z}{x}-1\)

\(\Leftrightarrow x\left(1-\frac{1}{x}\right)+y\left(1-\frac{1}{y}\right)+z\left(1-\frac{1}{z}\right)\ge3\)

Vì \(x,y,z\ge2\Rightarrow\left(1-\frac{1}{x}\right),\left(1-\frac{1}{y}\right),\left(1-\frac{1}{z}\right)\ge\frac{1}{2}\)

Do đó \(x\left(1-\frac{1}{x}\right)+y\left(1-\frac{1}{y}\right)+z\left(1-\frac{1}{z}\right)\ge3\)Luôn đúng \(\forall x,y,z\ge2\)---> đpcm

6 tháng 9 2020

\(\left(x+1\right)\left(2x-3\right)-x^2=\left(x-2\right)^2\)

\(\Leftrightarrow2x^2-3x+2x-3-x^2=x^2-4x+4\)

\(\Leftrightarrow x^2-x-3-x^2+4x-4=0\)

\(\Leftrightarrow3x-7=0\)

\(\Leftrightarrow3x=7\)

\(\Leftrightarrow x=\frac{7}{3}\)

6 tháng 9 2020

( x + 1 )( 2x - 3 ) - x2 = ( x - 2 )2

<=> 2x2 - x - 3 - x2 = x2 - 4x + 4

<=> 2x2 - x - x2 - x2 + 4x = 4 + 3

<=> 3x = 7

<=> x = 7/3

Vậy S = { 7/3 }

6 tháng 9 2020

Từ điểm M kẻ đường thẳng Mx song song với DC cắt AB tại H 
xét tam giác AHM có : DI // HM (DC // Mx) 
AI = IM (gt) 
=> DI là đường trung bình của tam giác AHM 
=> AD =DH (1) 
xét tam giác BDC có: DC // HM (DC // Mx) 
BM = MC (gt) 
=> HM là đường trung bình của tam giác BDC 
=> DH = HB (2) 
từ (1) và (2) => AD = DH = HB 
=> AD=1/2 DB 
=> đpcm 

Chúc bạn học tốt

6 tháng 9 2020

từ điểm M kẻ đường thẳng mx song song với DC cắt AB tại H
xét tam giác AHM có : DI song song HM ( DC song song Mx )
AI=IM (gt)
suy ra DI là đường trung bình của tam giá AHM
suy ra AD= DH (1)
xét tam giác BDC có: DC song song HM( DC song song Mx )
BM = MC (gt) 
suy ra HM là đường trung bình của tam giác BDC 
suy ra DH =HB (2) 
TỪ (1) VÀ (2) suy ra AD =DH =HB 
suy ra AD=1/2 DB HAY BD =2AD 
suy ra đpcm
 

6 tháng 9 2020

1) -3x( x + 2 )2 + ( x + 3 )( x - 1 )( x + 1 ) - ( 2x - 3 )2

= -3x( x2 + 4x + 4 ) + ( x + 3 )( x2 - 1 ) - ( 4x2 - 12x + 9 )

= -3x3 - 12x2 - 12x + x3 + 3x2 - x -3 - 4x2 + 12x - 9

= ( -3x3 + x3 ) + ( -12x2 + 3x2 - 4x2 ) + ( -12x - x + 12x ) + ( -3 - 9 )

= -2x3 - 13x2 - x - 12

2) ( x - 3 )( x + 3 )( x + 2 ) - ( x - 1 )( x2 - 3 ) - 5x( x + 4 )2 - ( x - 5 )2

= ( x2 - 9 )( x + 2 ) - ( x3 - x2 - 3x + 3 ) - 5x( x2 + 8x + 16 ) - ( x2 - 10x + 25 )

= x3 + 2x2 - 9x - 18 - x3 + x2 + 3x - 3 - 5x3 - 40x2 - 80x - x2 + 10x - 25

= ( x3 - x3 - 5x3 ) + ( 2x2 + x2 - 40x2 - x2 ) + ( -9x + 3x - 80x + 10x ) + ( -18 - 3 - 25 )

= -5x3 - 38x2 - 76x - 46

3) 2x( x - 4 )2 - ( x + 5 )( x - 2 )( x + 2 ) + 2( x + 5 )2 + ( x - 5 )2

= 2x( x2 - 8x + 16 ) - ( x + 5 )( x2 - 4 ) + 2( x2 + 10x + 25 ) + x2 - 10x + 25

= 2x3 - 16x2 + 32x - ( x3 + 5x2 - 4x - 20 ) + 2x2 + 20x + 50 + x2 - 10x + 25

= 2x3 - 16x2 + 32x - x3 - 5x2 + 4x + 20 + 2x2 + 20x + 50 + x2 - 10x + 25

= ( 2x3 - x3 ) + ( -16x2 - 5x2 + 2x2 + x2 ) + ( 32x + 4x + 20x - 10x ) + ( 20 + 50 + 25 )

= x3 - 18x2 + 46x + 95

6 tháng 9 2020

x2 + 2y2 + 2xy - 4x + 6y + 29 = 0

<=> ( x2 + 2xy + y2 - 4x - 4y + 4 ) + ( y2 + 10y + 25 ) = 0

<=> [ ( x2 + 2xy + y2 ) - 2( x + y ).2 + 22 ] + ( y + 5 )2 = 0

<=> ( x + y - 2 )2 + ( y + 5 )2 = 0 (*)

<=> \(\hept{\begin{cases}\left(x+y-2\right)^2\ge0\forall x,y\\\left(y+5\right)^2\ge0\forall y\end{cases}}\Rightarrow\left(x+y-2\right)^2+\left(y+5\right)^2\ge0\forall x,y\)

Đẳng thức xảy ra ( tức (*) ) <=> \(\hept{\begin{cases}x+y-2=0\\y+5=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=7\\y=-5\end{cases}}\)

Vậy x = 7 ; y = -5

6 tháng 9 2020

1. ( 2x + y )( 4x2 - 2xy + y2 ) - 8x3 - y3 - 16

= [ ( 2x )3 + y3 ] - 8x3 - y3 - 16

= 8x3 + y3 - 8x3 - y3 - 16

= -16 ( đpcm )

2. ( 3x + 2y )2 + ( 3x + 2y )2 - 18x2 - 8y2 + 3

= 2( 3x + 2y )2 - 18x2 - 8y2 + 3

= 2( 9x2 + 12xy + 4y2 ) - 18x2 - 8y2 + 3

= 18x2 + 24xy + 8y2 - 18x2 - 8y2 + 3

= 24xy + 3 ( có phụ thuộc vào biến )

3. ( -x - 3 )3 + ( x + 9 )( x2 + 27 ) + 19

= -x3 - 9x2 - 27x - 27 + x3 + 9x2 + 27x + 243 + 19

= -27 + 243 + 19 = 235 ( đpcm )

4. ( x - 2 )3 - x( x + 1 )( x - 1 ) + 13( x - 4 )

= x3 - 6x2 + 12x - 8 - x( x2 - 1 ) + 13x - 52

= x3 - 6x2 + 12x - 8 - x3 + x + 13x - 52

= -6x2 + 26x - 60 ( có phụ thuộc vào biến )

6 tháng 9 2020

1. (2x+y).(4x2-2xy+y2)-8x3-y3-16

=(2x)3+y3-8x3-y3-16

=-16

Vậy đa thức trên kh phụ thuộc vào biến x

2. (3x+2y)2+(3x+2y)2-18x2-8y2+3

=(9x2+12xy+4y2)+(9x2+12xy+4y2)-18x2-8y2+3

=9x2+12xy+4y2+9x2+12xy+4y2-18x2-8y2+3

=24xy+3

Vậy đa thức trên phụ thuộc biến x

7 tháng 9 2020

\(\frac{2013n^2+3}{8}\inℤ\Leftrightarrow2013n^2+3⋮8\Leftrightarrow8.251.n^2+5n^2+3⋮8\)

Vì \(8.251.n^2⋮8\) nên  \(5n^2+3⋮8\Leftrightarrow5n^2+3-8⋮8\Leftrightarrow5\left(n^2-1\right)⋮8\)

Vì 5 và 8 là 2 số nguyên tố cùng nhau nên \(n^2-1⋮8\Leftrightarrow\left(n-1\right)\left(n+1\right)⋮8\)

Vì các số nguyên tố lớn hơn 2 đều lẻ nên sẽ có dạng (4k+1) hoặc (4k+3), k là số tự nhiên

\(\Rightarrow\left(n-1\right)\left(n+1\right)=\orbr{\begin{cases}\left[\left(4k+1\right)-1\right]\left[\left(4k+1\right)+1\right]=4k\left(4k+2\right)⋮8\\\left[\left(4k+3\right)-1\right]\left[\left(4k+3\right)+1\right]=\left(4k+2\right)\left(4k+4\right)⋮8\end{cases}}\)

(Vì (4k+2) là số chẵn và (4k), (4k+4) đều chia hết cho 4 nên tích của chúng chia hết cho 8)                     ---->đpcm