Cho x,y là các số thực dương thỏa mãn \(x+y\ge7\). Tìm giá trị nhỏ nhất \(A=3x+5y+\frac{4}{x}+\frac{75}{y}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho hình chữ nhật ABCD AB = 2 AC = 4 tính a) vector ab x c a và AC × BD
b) tính vector |AB +AC+2AD |
Bài này có thể biến đổi tương đương được đấy :D
BĐT cần CM tương đương: \(\frac{a^2c+b^2a+c^2b}{abc}\ge\frac{9}{a+b+c}\)
Áp dụng BĐT Cauchy: \(a^2+b^2+c^2\ge3\sqrt[3]{\left(abc\right)^2}\Leftrightarrow3\ge3\sqrt[3]{\left(abc\right)^2}\Rightarrow abc\le1\)
Khi đó: \(\frac{a^2c+b^2a+c^2b}{abc}\ge a^2c+b^2a+c^2b\)
Bây giờ ta cần CM: \(a^2c+b^2a+c^2b\ge\frac{9}{a+b+c}=\frac{\left(a^2+b^2+c^2\right)^2}{a+b+c}\)
\(\Leftrightarrow\left(a^2c+b^2a+c^2b\right)\left(a+b+c\right)\ge\left(a^2+b^2+c^2\right)^2\)
\(\Leftrightarrow a^3c+b^3a+c^3b+a^2b^2+b^2c^2+c^2a^2+abc\left(a+b+c\right)\ge a^4+b^4+c^4+2\left(a^2b^2+b^2c^2+c^2a^2\right)\)
\(\Leftrightarrow a^4+b^4+c^4+a^2b^2+b^2c^2+c^2a^2-abc\left(a+b+c\right)-a^3c-b^3a-c^3b\le0\)
\(\Leftrightarrow a^3\left(a-c\right)+b^3\left(b-a\right)+c^3\left(c-b\right)+a^2\left(b^2-ac\right)+b^2\left(c^2-ab\right)+c^2\left(a^2-bc\right)\le0\)
Đến đây cho em thời gian suy nghĩ đã ạ
Cách làm dễ nhất ở đây là bình phương 2 vế
đk: \(x\le\frac{5}{2}\)
Ta có: \(\sqrt{x^2+3x+11}=5-2x\)
\(\Rightarrow x^2+3x+11=\left(5-2x\right)^2\)
\(\Leftrightarrow x^2+3x+11=25-20x+4x^2\)
\(\Leftrightarrow3x^2-23x+14=0\)
\(\Leftrightarrow\left(3x-2\right)\left(x-7\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{2}{3}\left(tm\right)\\x=7\left(ktm\right)\end{cases}}\)
Vậy x = 2/3
ĐKXĐ : x ≤ 5/2
Bình phương hai vế
pt <=> x2 + 3x + 11 = 4x2 - 20x + 25
<=> 4x2 - 20x + 25 - x2 - 3x - 11 = 0
<=> 3x2 - 23x + 14 = 0
Δ = b2 - 4ac = (-23)2 - 4.3.14 = 361
Δ > 0 nên phương trình có hai nghiệm phân biệt
\(x_1=\frac{-b+\sqrt{\text{Δ}}}{2a}=\frac{23+\sqrt{361}}{6}=\frac{23+19}{6}=7\left(loai\right)\)
\(x_2=\frac{-b-\sqrt{\text{Δ}}}{2a}=\frac{23-\sqrt{361}}{6}=\frac{23-19}{6}=\frac{4}{6}=\frac{2}{3}\left(tm\right)\)
Vậy phương trình có 1 nghiệm x = 2/3
\(F=\frac{x}{x^2+2}\)
với x > 0, áp dụng bđt Cauchy ta có :
\(x^2+2\ge2\sqrt{x^2+2}=2x\sqrt{2}\)
=> \(\frac{1}{x^2+2}\le\frac{1}{2x\sqrt{2}}\)
=> \(\frac{x}{x^2+2}\le\frac{1}{2\sqrt{2}}\)( x > 0 nên khi nhân vào cả hai vế bđt giữ chiều )
hay \(F\le\frac{1}{2\sqrt{2}}\)
đẳng thức xảy ra khi \(x=\sqrt{2}\)
vậy maxF = \(\frac{1}{2\sqrt{2}}\), đạt được khi \(x=\sqrt{2}\)
\(2x^2+\frac{1}{x^3}=\frac{2}{3}x^2+\frac{2}{3}x^2+\frac{2}{3}x^2+\frac{1}{2x^3}+\frac{1}{2x^3}\ge5\sqrt[5]{\left(\frac{2}{3}x^2\right)^3.\left(\frac{1}{2x^3}\right)^2}=5\sqrt[5]{\frac{2}{3^3}}\)
Dấu \(=\)xảy ra khi \(\frac{2}{3}x^2=\frac{1}{2x^3}\Leftrightarrow x=\sqrt[5]{\frac{3}{4}}\).
Dự đoán dấu bằng: \(\hept{\begin{cases}x=2\\y=5\end{cases}}\)
Bài làm:
Ta có:
\(A=3x+5y+\frac{4}{x}+\frac{75}{y}\)
\(A=\left(x+\frac{4}{x}\right)+\left(3x+\frac{75}{x}\right)+2\left(x+y\right)\)
Áp dụng BĐT Cauchy cho 2 số dương ta có:
\(A\ge2\sqrt{x\cdot\frac{4}{x}}+2\sqrt{3x\cdot\frac{75}{x}}+2\cdot7\)
\(=2\cdot2+2\cdot15+14=48\)
Dấu "='' xảy ra khi: \(\hept{\begin{cases}x=2\\y=5\end{cases}}\)
Vậy Min(A) = 48 khi x = 2 và y = 5
\(A=3x+5y+\frac{4}{x}+\frac{75}{y}\)
\(=2\left(x+y\right)+\left(x+\frac{4}{x}\right)+\left(3y+\frac{75}{y}\right)\)
\(\ge2\times7+2\sqrt{x\times\frac{4}{x}}+2\sqrt{3y\times\frac{75}{y}}\)( AM-GM )
\(=14+4+30=48\)
Đẳng thức xảy ra khi x = 2 ; y = 5
Vậy MinA = 48, đạt được khi x = 2, y = 5