K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a, Vì OC=OB nên \(\Delta BOC\)cân tại O \(\Rightarrow\widehat{BOC}=\widehat{OCB}=60^0\)

Mà \(\Delta ACB\)nội tiếp (O) nên \(\widehat{ACB}=90^0\Rightarrow\widehat{BAC}=30^0\)

\(\Delta AOC\)cân nên \(\widehat{BAC}=\widehat{MCO}=30^0\)(1)

Lại có \(\widehat{MOC}=90^0-60^0=30^0\left(2\right)\)

Từ (1) và (2) => MO=MC

b, Vì M nằm trên OK => MA=MB

\(\Rightarrow\Delta AMB\)cân \(\Rightarrow\widehat{MAO}=\widehat{MBO}=30^0\)

Lại có \(OM=tan30^0.OB=R\frac{\sqrt{3}}{3}\)

15 tháng 2 2020

Gọi số học sinh giỏi là x ( x > 3 , học sinh )

=> Mỗi học sinh sẽ có số quyển vở là: \(\frac{280}{x}\)( quyển )

Thực tế số học sinh được phát vở là: x - 3 ( học sinh )

=> Mỗi học sinh sẽ có số quyển vở là: \(\frac{280}{x-3}\)( quyển)

Theo bài ra ta có phương trình:

\(\frac{280}{x-3}=\frac{280}{x}+12\)

<=> \(280x=280\left(x-3\right)+12\left(x-3\right)x\)

<=> \(12x^2-36x-840=0\)

Giải delta 

<=> x = -7 ( loại ) hoặc x = 10 ( tm)

Vậy số học sinh cần tìm là 10 học sinh.

Câu 1. Chứng minh các bất đẳng thức:a) (a + b)2 ≤ 2(a2 + b2)b) (a + b + c)2 ≤ 3(a2 + b2 + c2)c) (a1 + a2 + ….. + an)2 ≤ n(a12 + a22 + ….. + an2).Câu 2. Cho a3 + b3 = 2. Chứng minh rằng a + b ≤ 2.Câu 3. Chứng minh rằng: [x] + [y] ≤ [x + y].Câu 4. Tìm giá trị lớn nhất của biểu thức: Câu 5. Tìm giá trị nhỏ nhất của:  với x, y, z > 0.Câu 6. Tìm giá trị nhỏ nhất của: A = x2 + y2 biết x + y = 4.Câu 7. Tìm giá trị lớn...
Đọc tiếp

Câu 1. Chứng minh các bất đẳng thức:

a) (a + b)2 ≤ 2(a2 + b2)

b) (a + b + c)2 ≤ 3(a2 + b2 + c2)

c) (a1 + a2 + ….. + an)2 ≤ n(a12 + a22 + ….. + an2).

Câu 2. Cho a3 + b3 = 2. Chứng minh rằng a + b ≤ 2.

Câu 3. Chứng minh rằng: [x] + [y] ≤ [x + y].

Câu 4. Tìm giá trị lớn nhất của biểu thức: 

Câu 5. Tìm giá trị nhỏ nhất của:  với x, y, z > 0.

Câu 6. Tìm giá trị nhỏ nhất của: A = x2 + y2 biết x + y = 4.

Câu 7. Tìm giá trị lớn nhất của: A = xyz(x + y)(y + z)(z + x) với x, y, z ≥ 0; x + y + z = 1.

Câu 8. Xét xem các số a và b có thể là số vô tỉ không nếu:

a) ab và a/b là số vô tỉ.

b) a + b và a/b là số hữu tỉ (a + b ≠0)

c) a + b, a2 và b2 là số hữu tỉ (a + b ≠0)

Câu 9. Cho a, b, c > 0. Chứng minh: a3 + b3 + abc ≥ ab(a + b + c)

Câu 10. Cho a, b, c, d > 0. Chứng minh:

Câu 11. Chứng minh rằng [2x] bằng 2[x] hoặc 2[x] + 1

Câu 12. Cho số nguyên dương a. Xét các số có dạng: a + 15 ; a + 30 ; a + 45 ; … ; a + 15n. Chứng minh rằng trong các số đó, tồn tại hai số mà hai chữ số đầu tiên là 96.

0