K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 2 2020

A B O C D E H

17 tháng 2 2020

a, Ap dung tinh chat 2 tiep tuyen cat nhau => \(CD=CE\Rightarrow\Delta CDE\) can

b, Co \(\widehat{CDO}=\widehat{CEO}=90^0\Rightarrow\)

16 tháng 2 2020

A B C Q M x O I N H

17 tháng 2 2020

a) Dễ thấy: góc MQA=90độ

MA, MC là 2 tiếp tuyến nên MO vuông góc với AC hay góc MIA=90 độ

suy ra AIQM là tứ giác nội tiếp

b) AIQM là tứ giác nội tiếp nên: góc IMQ = góc QAI

mà góc QAI = góc QBC nên góc IMQ = góc QBC 

Hay OM // BC

16 tháng 2 2020

\(10=4x^2+4y^2+6=\left(x^2+y^2\right)+3\left(x^2+1\right)+3\left(y^2+1\right)\)

\(2xy+6x+6y=2\left(xy+3x+3y\right)\Rightarrow P\le5\) tại \(x=y=\frac{1}{\sqrt{2}}\)

17 tháng 2 2020

1. Xét điều kiện:

\(\hept{\begin{cases}x-1\ge0\\x-x^2\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}x-1\ge0\left(1\right)\\x\left(1-x\right)\ge0\left(2\right)\end{cases}}\)

(1) <=> x \(\ge\)1 > 0   thay vào (2) ta có: 1 - x \(\ge\)0 <=> x \(\le\)1

Do đó chỉ có thể xảy ra trường hợp x = 1

=> ĐK : x = 1

Với x = 1 thử vào phương trình ta có: 0 - 0 + 2 = 2 ( thỏa mãn)

Vậy x = 1 là nghiệm của phương trình.

17 tháng 2 2020

bài 2: ĐK:\(0\le x\le1\)

+) Với điều kiện: A,B không âm

 \(\left(A+B\right)^2\ge A^2+B^2\)(1)

<=> \(A^2+B^2+2AB\ge A^2+B^2\)

<=> \(2AB\ge0\)luôn đúng

Dấu "=" xảy ra <=> A = 0 hoặc B = 0

Áp dụng với \(\left(\sqrt{1-x}+\sqrt{x}\right)^2\ge1-x+x=1\)

=> \(\sqrt{1-x}+\sqrt{x}\ge1\)

Dấu "=" xảy ra <=>  x = 0 hoặc x = 1

+) Với điều kiện C, D không âm

\(\left(C+D\right)^2\ge C^2-D^2\)(2)

Thật vậy: (2)<=> \(2CD+D^2\ge-D^2\)

<=> \(D\left(C+D\right)\ge0\)luôn đúng

Dấu "=" xayra <=> D = 0 hoặc C + D = 0

Áp dụng" \(\left(\sqrt{1+x}+\sqrt{x}\right)^2\ge1+x-x=1\)

=> \(\sqrt{1+x}+\sqrt{x}\ge1\)

Dấu "=" xảy ra <=> x = 0 

Vậy khi đó: 

\(P=\sqrt{1-x}+\sqrt{1+x}+\sqrt{4x}\)

\(=\left(\sqrt{1-x}+\sqrt{x}\right)+\left(\sqrt{1+x}+\sqrt{x}\right)\)

\(\ge1+1=2\)

Dấu "=" xảy ra <=> x = 0

16 tháng 2 2020

Svacxo chăng :33 Ai thử đi, e sợ biến nhiều lắm :))

16 tháng 2 2020

Em thử nha, rất là thích BĐT :33

Áp dụng BĐT Cô-si cho 2 số dương ta có :

\(Q=\frac{a+b}{ab}+\frac{ab}{a+b}=\left(\frac{a+b}{4ab}+\frac{ab}{a+b}\right)+\frac{3\left(a+b\right)}{4ab}\ge2\sqrt{\frac{a+b}{4ab}\cdot\frac{ab}{a+b}}+\frac{3\left(a+b\right)}{4ab}\)

                                                                                                                      \(\ge2\cdot\frac{1}{2}+\frac{3\cdot2}{\left(a+b\right)^2}=1+\frac{3}{2}=\frac{5}{2}\)

Dấu "=" xảy ra \(\Leftrightarrow a=b=1\)

Vậy : min \(Q=\frac{5}{2}\) tại \(a=b=1\)