K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 2 2020

Gọi chiều dài của sân trường là x (m) : x > 0
-------------rộng-----------------------y (m) : y > 0
Vì chu vi sân trường bằng 340m nên x+y = 170 (m)
Ba lần chiều dài lớn hơn bốn lần chiều rộng là 20m. Như vậy :
3x -4y = 20
Ta có hệ phương trình \(\hept{\begin{cases}x+y=170\\3x-4y=20\end{cases}}\)giải hệ này ta đc x=100, y=70
Vậy chiều dài là 100m
       chiều rộng là 70m

17 tháng 2 2020

Đk để hệ pt có nghiệm duy nhất: \(\frac{2}{m}\ne\frac{-1}{2}\Leftrightarrow m\ne-4\)

Ta có: \(\hept{\begin{cases}2x-y=8\\mx+2y=m+3\end{cases}\Leftrightarrow\hept{\begin{cases}4x-2y=16\\mx+2y=m+3\end{cases}}}\)

\(\Leftrightarrow\hept{\begin{cases}\left(4+m\right)x=m+19\\2x-y=8\end{cases}\Leftrightarrow\hept{\begin{cases}x=\frac{m+19}{m+4}\\y=2x-8\end{cases}}}\)

\(\Leftrightarrow\hept{\begin{cases}x=\frac{m+19}{m+4}\\y=2\cdot\frac{m+19}{m+4}-8\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{m+19}{m+4}\\y=\frac{2m+38-8m-32}{m+4}\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=\frac{m+19}{m+4}\\y=\frac{6-6m}{m+4}\end{cases}}\)

Với m khác -4 thì hpt có nghiệm duy nhất \(\left(x;y\right)=\left(\frac{m+19}{m+4};\frac{6-6m}{m+4}\right)\)

Ta có:\(x+y=\frac{m+19}{m+4}+\frac{6-6m}{m+4}=\frac{m+19+6-6m}{m+4}=\frac{25-5m}{m+4}\)

Để  \(x+y>0\Leftrightarrow\frac{25-5m}{m+4}>0\)

TH1: \(\hept{\begin{cases}25-5m>0\\m+4>0\end{cases}}\Leftrightarrow\hept{\begin{cases}5m< 25\\m>-4\end{cases}}\Leftrightarrow\hept{\begin{cases}m< 5\\m>-4\end{cases}}\Leftrightarrow-4< m< 5\) (tm)

TH2: \(\hept{\begin{cases}25-5m< 0\\m+4< 0\end{cases}\Leftrightarrow\hept{\begin{cases}5m>25\\m< -4\end{cases}\Leftrightarrow}\hept{\begin{cases}m>5\\m< -4\end{cases}}}\) (loại)

Vậy...

18 tháng 2 2020

Sửa đề: \(\frac{2}{xy}+\frac{3}{x^2+y^2}\ge14\) với x, y > 0 và x  + y = 1.

\(VT-VP=\frac{\left(x-y\right)^2\left[2\left(x-y\right)^2+xy\right]}{xy\left(x^2+y^2\right)}\ge0\)

Tổng quát hóa: Cho \(xy\left(2a-b\right)>0\) và x + y = t (t là hằng số)

Chứng minh: \(\frac{a}{xy}+\frac{b}{x^2+y^2}\ge\frac{4a+2b}{t^2}\)  

Xét hiệu: \(VT-VP=\frac{\left(x-y\right)^2\left[a\left(x-y\right)^2+\left(2a-b\right)xy\right]}{xy\left(x+y\right)^2\left(x^2+y^2\right)}\)

P/s: Bài toán trên là trường hợp đặt biệt của bài bên dưới khi a= 2;b=3;t=1