Tìm GTLN của cá biểu thức :
a, \(-3x^2+6x+1\)
b , \(-5x^2-2x+3\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. 4x2 - x + 10
= 4x2 - x + 1/16 + 159/16
= 4 ( x - 1/8 )2 + 159/16
Vì \(\left(x-\frac{1}{8}\right)^2\ge0\forall x\)=> \(4\left(x-\frac{1}{8}\right)^2+\frac{159}{16}\ge\frac{159}{16}\)
Dấu "=" xảy ra <=> \(4\left(x-\frac{1}{8}\right)^2=0\Leftrightarrow x-\frac{1}{8}=0\Leftrightarrow x=\frac{1}{8}\)
Vậy GTNN của bt trên = 159/16 <=> x = 1/8
b. 2x2 - 5x - 1
= 2x2 - 5x + 25/8 - 33/8
= 2 ( x - 5/4 )2 - 33/8
Vì \(\left(x-\frac{5}{4}\right)^2\ge0\forall x\)=> \(2\left(x-\frac{5}{4}\right)^2-\frac{33}{8}\ge-\frac{33}{8}\)
Dấu "=" xảy ra <=> \(2\left(x-\frac{5}{4}\right)^2=0\Leftrightarrow x-\frac{5}{4}=0\Leftrightarrow x=\frac{5}{4}\)
Vậy GTNN của bt trên = - 33/8 <=> x = 5/4
4x2 - x + 10
= 4( x2 - 1/4x + 1/64 ) + 159/16
= 4( x - 1/8 )2 + 159/16 ≥ 159/16 ∀ x
Đẳng thức xảy ra <=> x - 1/8 = 0 => x = 1/8
Vậy GTNN của biểu thức = 159/16 <=> x = 1/8
2x2 - 5x - 1
= 2( x2 - 5/2x + 25/16 ) - 33/8
= 2( x - 5/4 )2 - 33/8 ≥ -33/8 ∀ x
Đẳng thức xảy ra <=> x - 5/4 = 0 => x = 5/4
Vậy GTNN của biểu thức = -33/8 <=> x = 5/4
\(5x^2-25x-4=0\)
\(\Leftrightarrow x^2-5x-\frac{4}{5}=0\)
\(\Leftrightarrow x^2-5x+\frac{25}{4}=\frac{141}{20}\)
\(\Leftrightarrow\left(x-\frac{5}{2}\right)^2=\frac{141}{20}\)
\(\Leftrightarrow\orbr{\begin{cases}x-\frac{5}{2}=\frac{\sqrt{705}}{10}\\x-\frac{5}{2}=-\frac{\sqrt{705}}{10}\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{25+\sqrt{705}}{10}\\x=\frac{25-\sqrt{705}}{10}\end{cases}}\)
Tìm x
a) ( x - 1 )^3 + 1 + 3x( x - 4 ) = 0
b) x^3 - 6x^2 + 9x = 0
giúp mình với mình cần gấp
mình cảm ơn
b) \(x^3-6x^2+9x=0\)
\(\Leftrightarrow x.\left(x^2-6x+9\right)=0\)
\(\Leftrightarrow x.\left(x-3\right)^2=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x-3=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=3\end{cases}}\)
Vậy \(x=0\)hoặc \(x=3\)
a. ( x - 1 )3 + 1 + 3x ( x - 4 ) = 0
<=> x3 - 3x2 + 3x - 1 + 1 + 3x2 - 12x = 0
<=> x3 - 9x = 0
<=> x ( x2 - 9 ) = 0
<=> \(\orbr{\begin{cases}x=0\\x^2-9=0\end{cases}}\)<=> \(\orbr{\begin{cases}x=0\\x=\pm3\end{cases}}\)
b. x3 - 6x2 + 9x = 0
<=> x ( x2 - 6x + 9 ) = 0
<=> x ( x - 3 )2 = 0
<=> \(\orbr{\begin{cases}x=0\\\left(x-3\right)^2=0\end{cases}}\)<=> \(\orbr{\begin{cases}x=0\\x=3\end{cases}}\)
a/ Xét tg ACD và tg BDC có
CD chung
^ADC = ^BCD (góc ở đáy hình thang cân)
AD=BC (cạnh bên của hình thang cân)
=> tg ACD = tg BDC (c.g.c)=> ^ACD = ^BDC
b/ Giả sử AB và CD không đổi => tổng và hiệu của chúng không đổi. Mà BH chính là khoảng cách giữa AB và CD có thể thay đổi tuỳ ý
=> Bài toán thiếu dữ kiện
Bài giải
\(\left(x-4\right)\left(5x-2\right)-3\left(x-4\right)=0\)
\(\left(x-4\right)\left(5x-2-3\right)=0\)
\(\left(x-4\right)\left(5x-5\right)=0\)
\(\left(x-4\right)x\left(x-1\right)=0\)
\(\Rightarrow\)Hoặc \(x-4=0\text{ }\Rightarrow\text{ }x=4\)
Hoặc \(x=0\)
Hoặc \(x-1=0\text{ }\Rightarrow\text{ }x=1\)
\(\Rightarrow\text{ }x\in\left\{4\text{ ; }0\text{ ; }1\right\}\)
( x - 4 )( 5x - 2 ) - 3( x - 4 ) = 0
⇔ 5x2 - 2x - 20x + 8 - 3x + 12 = 0
⇔ 5x2 - 25x + 20 = 0
⇔ 5x2 - 5x - 20x + 20 = 0
⇔ 5x( x - 1 ) - 20( x - 1 ) = 0
⇔ ( x - 1 )( 5x - 20 ) = 0
⇔ \(\orbr{\begin{cases}x-1=0\\5x-20=0\end{cases}\text{⇔}}\orbr{\begin{cases}x=1\\x=4\end{cases}}\)
Min, Max hả ?
A = x2 - 10x - 3
= ( x2 - 10x + 25 ) - 28
= ( x - 5 )2 - 28 ≥ -28 ∀ x
Đẳng thức xảy ra <=> x - 5 = 0 => x = 5
=> MinA = -28 <=> x = 5
B = -3x2 + 6x - 1
= -3( x2 - 2x + 1 ) + 2
= -3( x - 1 )2 + 2 ≤ 2 ∀ x
Đẳng thức xảy ra <=> x - 1 = 0 => x = 1
=> MaxB = 2 <=> x = 1
C = -x2 + 4x
= -( x2 - 4x + 4 ) + 4
= -( x - 2 )2 + 4 ≤ 4 ∀ x
Đẳng thức xảy ra <=> x - 2 = 0 => x = 2
=> MaxC = 4 <=> x = 2
D = 2x2 - 8x - 1
= 2( x2 - 4x + 4 ) - 9
= 2( x - 2 )2 - 9 ≥ -9 ∀ x
Đẳng thức xảy ra <=> x - 2 = 0 => x = 2
=> MinD = -9 <=> x = 2
a) Ta có x + y = 25
=> (x + y)2 = 625
=> x2 + y2 + 2xy = 625
=> x2 + y2 + 10 = 625
=> x2 +y2 = 615
b) Ta có x + y = 3
=> (x + y)3 = 27
=> x3 + 3x2y + 3xy2 + y3 = 27
=> x3 + y3 + 3xy(x + y) = 27
=> x3 + y3 + 9xy = 27
Lại có x + y = 3
=> (x + y)2 = 9
=> x2 + y2 + 2xy = 9
=> 2xy = 4
=> xy = 2
Khi đó x3 + y3 + 9xy + 27
=> x3 + y3 + 18 = 27
=> x3 + y3 = 9
c) Ta có x - y = 5
=> (x - y)2 = 25
=> x2 + y2 - 2xy = 25
=> 2xy = -10
=> xy = -5
Khi đó : x3 - y3 = (x - y)(x2 + xy + y2) = 5(15 - 5) = 5.10 = 50
Bài 4.
a) x2 + y2 = x2 + 2xy + y2 - 2xy
= ( x2 + 2xy + y2 ) - 2xy
= ( x + y )2 - 2xy
= 252 - 2.136
= 625 - 272
= 353
b) x + y = 3
⇔ ( x + y )2 = 9
⇔ x2 + 2xy + y2 = 9
⇔ 5 + 2xy = 9 ( gt x2 + y2 = 5 )
⇔ 2xy = 4
⇔ xy = 2
x3 + y3 = x3 + 3x2y + 3xy2 + y3 - 3x2y - 3xy2
= ( x3 + 3x2y + 3xy2 + y3 ) - ( 3x2y + 3xy2 )
= ( x + y )3 - 3xy( x + y )
= 33 - 3.2.3
= 27 - 18
= 9
a) A = x2 + 12x + 39
= ( x2 + 12x + 36 ) + 3
= ( x + 6 )2 + 3 ≥ 3 ∀ x
Đẳng thức xảy ra ⇔ x + 6 = 0 => x = -6
=> MinA = 3 ⇔ x = -6
B = 9x2 - 12x
= 9( x2 - 4/3x + 4/9 ) - 4
= 9( x - 2/3 )2 - 4 ≥ -4 ∀ x
Đẳng thức xảy ra ⇔ x - 2/3 = 0 => x = 2/3
=> MinB = -4 ⇔ x = 2/3
b) C = 4x - x2 + 1
= -( x2 - 4x + 4 ) + 5
= -( x - 2 )2 + 5 ≤ 5 ∀ x
Đẳng thức xảy ra ⇔ x - 2 = 0 => x = 2
=> MaxC = 5 ⇔ x = 2
D = -4x2 + 4x - 3
= -( 4x2 - 4x + 1 ) - 2
= -( 2x - 1 )2 - 2 ≤ -2 ∀ x
Đẳng thức xảy ra ⇔ 2x - 1 = 0 => x = 1/2
=> MaxD = -2 ⇔ x = 1/2
Ta có A = x2 + 12x + 39 = (x2 + 12x + 36) + 3 = (x + 6)2 + 3 \(\ge\)3
Dấu "=" xảy ra <=> x + 6 = 0
=> x = -6
Vậy Min A = 3 <=> x = -6
Ta có B = 9x2 - 12x = [(3x)2 - 12x + 4] - 4 =(3x - 2)2 - 4 \(\ge\)-4
Dấu "=" xảy ra <=> 3x - 2 =0
=> x = 2/3
Vậy Min B = -4 <=> x = 2/3
b) Ta có C = 4x - x2 + 1 = -(x2 - 4x - 1) = -(x2 - 4x + 4) + 5 = -(x - 2)2 + 5 \(\le\)5
Dấu "=" xảy ra <=> x - 2 = 0
=> x = 2
Vậy Max C = 5 <=> x = 2
Ta có D = -4x2 + 4x - 3 = -(4x2 - 4x + 1) - 2 = -(2x - 1)2 - 2 \(\le\)-2
Dấu "=" xảy ra <=> 2x - 1 = 0
=> x = 0,5
Vậy Max D = -2 <=> x = 0,5
a) -3x2 + 6x + 1
= -3( x2 - 2x + 1 ) + 4
= -3( x - 1 )2 + 4 ≤ 4 ∀ x
Đẳng thức xảy ra <=> x - 1 = 0 => x = 1
Vậy GTLN của biểu thức = 4 <=> x = 1
b) -5x2 - 2x + 3
= -5( x2 + 2/5x + 1/25 ) + 16/5
= -5( x + 1/5 )2 + 16/5 ≤ 16/5 ∀ x
Đẳng thức xảy ra <=> x + 1/5 = 0 => x = -1/5
Vậy GTLN của biểu thức = 16/5 <=> x = -1/5