Bài 3 câu b và câu d
Bài 4 câu c và d
Bài 5 câu d,e,f giải
giúp mình với ạ cần gấp trong tối nay cả 3 bài
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = ( x - 3 )( x - 7 ) - ( 2x - 5 )( x - 1 )
= x2 - 10x + 21 - ( 2x2 - 7x + 5 )
= x2 - 10x + 21 - 2x2 + 7x - 5
= -x2 - 3x + 16
Rồi bạn thế lần lượt x = 0 ; x = 1 ; x = -1 vô là xong (:
B = ( 3x + 5 )( 2x - 1 ) + ( x - 1 )( 3x + 2 )
= 6x2 + 7x - 5 + 3x2 - x - 2
= 9x2 + 6x - 7
| x | = 2 <=> x = 2 hoặc x = -2
Rồi thế vô (:
Good luck
Đề: Tính???
20122 - 20112 + 20102 - 20092 + ... + 22 - 12
= (2012 + 2011) (2012 - 2011) + (2010 + 2009) (2010 - 2009) + ... + (2 + 1) (2 - 1)
= 2012 + 2011 + 2010 + 2009 + ... + 2 + 1
Số số hạng là: (2012 - 1) : 1 + 1 = 2012 (số)
Tổng bằng: (1 + 2012) . 2012 : 2 = 2025078
Vậy 20122 - 20112 + 20102 - 20092 + ... + 22 - 12 = 2025078.
1 + 2xy - x2 - y2
= 1 - ( x2 - 2xy + y2 )
= 12 - ( x - y )2
= [ 1 - ( x - y ) ][ 1 + ( x - y ) ]
= ( y - x + 1 )( x - y + 1 )
a2 + b2 - c2 - d2 - 2ab + 2cd
= ( a2 - 2ab + b2 ) - ( c2 - 2cd + d2 )
= ( a - b )2 - ( c - d )2
= [ ( a - b ) - ( c - d ) ][ ( a - b ) + ( c - d ) ]
= ( a - b - c + d )( a - b + c - d )
a3b3 - 1
= ( ab )3 - 13
= ( ab - 1 )[ ( ab )2 + ab.1 + 12 ]
= ( ab - 1 )( a2b2 + ab + 1 )
x2( y - z ) + y2( z - x ) + z2( x - y )
= z2( x - y ) + x2y - x2z + y2z + y2x
= z2( x - y ) + ( x2y - y2x ) - ( x2z - y2z )
= z2( x - y ) + xy( x - y ) - z( x2 - y2 )
= z2( x - y ) + xy( x - y ) - z( x + y )( x - y )
= ( x - y )[ z2 + xy - z( x + y ) ]
= ( x - y )( z2 + xy - zx - zy )
= ( x - y )[ ( z2 - zx ) - ( zy - xy ) ]
= ( x - y )[ z( z - x ) - y( z - x ) ]
= ( x - y )( z - x )( z - y )
Ta có tam giác Pascal:
Bậc 0: 1
Bậc 1: 1 1
Bậc 2: 1 2 1
Bậc 3: 1 3 3 1
Bậc 4: 1 4 6 4 1
Bậc 5: 1 5 10 10 5 1
Bậc 6: 1 6 15 20 15 6 1
Bậc 7: 1 7 21 35 35 21 7 1
Bậc 8: 1 8 28 56 70 56 28 8 1
Suy ra:
\(\left(a+b\right)^7=a^7+7a^6b+21a^5b^2+35a^4b^3+35a^3b^4+21a^2b^5+7ab^6+b^7\)
\(\left(a+b\right)^8=a^8+8a^7b+28a^6b^2+56a^5b^3+70a^4b^4+56a^3b^4+28a^2b^6+8ab^7+a^8\)
Chúc bn hok tốt ^_^
Bài 1
( x - y )2 - 4
= ( x - y )2 - 22
= ( x - y - 2 )( x - y + 2 )
x2 - 16( x + y )2
= x2 - 42( x + y )2
= x2 - ( 4x + 4y )2
= ( x2 - 4x - 4y )( x2 - 4x + 4y )
8x3 + 36x2y + 54xy2 + 27y3
= ( 2x )3 + 3.( 2x )2.3y + 3.2x.( 3y )2 + ( 3y )3
= ( 2x + 3y )3
Bài 2.
a) ( x2 + 4 )( x2 - 4 ) - ( x2 + 1 )( x2 - 1 )
= [ ( x2 )2 - 42 ] - [ ( x2 )2 - 12 ]
= x4 - 16 - x4 + 1
= -15
b) ( y - 3 )( y + 3 )( y2 + 9 )( y2 + 2 )( y2 - 2 )
= [ ( y - 3 )( y + 3 )( y2 + 9 ) ][ ( y2 + 2 )( y2 - 2 ) ]
= { [ ( y - 3 )( y + 3 ) ]( y2 + 9 ) }[ ( y2 )2 - 22 ]
= [ ( y2 - 9 )( y2 + 9 ) ]( y4 - 4 )
= ( y4 - 81 )( y4 - 4 )
= y4( y4 - 4 ) - 81( y4 - 4 )
= y8 - 4y4 - 81y4 + 324
= y8 - 85y4 + 324
\(a,\left(a+b\right)\left(a+b\right)=a^2+2ab+b^2\)
\(b,\left(a+2\right)\left(a+2\right)=a^2+4a+4\)
\(c,\left(a-b\right)\left(a-b\right)=a^2-2ab+b^2\)
\(d,\left(7-2y\right)\left(7-2y\right)=49-28y+4y^2\)
( a + b )( a + b ) = a( a + b ) + b( a + b ) = a2 + ab + ab + b2 = a2 + 2ab + b2
( a + 2 )( a + 2 ) = a( a + 2 ) + 2( a + 2 ) = a2 + 2a + 2a + 4 = a2 + 4a + 4
( a - b )( a - b ) = a( a - b ) - b( a - b ) = a2 - ab - ab + b2 = a2 - 2ab + b2
( 7 - 2y )( 7 - 2y ) = 7( 7 - 2y ) - 2y( 7 - 2y ) = 49 - 14y - 14y + 4y2 = 49 - 28y + 4y2
( 2 - x )( x + 2 ) = 2( x + 2 ) - x( x + 2 ) = 2x + 4 - x2 - 2x = 4 - x2
\(\left(\sqrt{2x}-y\right)^2=\left(\sqrt{2x}\right)^2-2\sqrt{2x}y+y^2=2x-2y\sqrt{2x}+y^2\)
\(\left(x^2-4\right)\left(x^2+4\right)=\left(x^2\right)^2-4^2=x^4-16\)
Bài 1.
a) 2x2 + 3( x - 1 )( x + 1 ) - 5x( x + 1 )
= 2x2 + 3( x2 - 1 ) - 5x2 - 5x
= 2x2 + 3x2 - 3 - 5x2 - 5x
= -5x - 3
b) 4( x - 1 )( x + 5 ) - ( x - 2 )( x + 5 ) - 3( x - 1 )( x + 2 )
= 4( x2 + 4x - 5 ) - ( x2 + 3x - 10 ) - 3( x2 + x - 2 )
= 4x2 + 16x - 20 - x2 - 3x + 10 - 3x2 - 3x + 6
= 10x - 4
Bài 2.
a) ( 8 - 5x )( x + 2 ) + 4( x - 2 )( x + 1 ) + 2( x - 2 )( x + 2 ) = 0
<=> -5x2 - 2x + 16 + 4( x2 - x - 2 ) + 2( x2 - 4 ) = 0
<=> -5x2 - 2x + 16 + 4x2 - 4x - 8 + 2x2 - 8 = 0
<=> x2 - 6x = 0
<=> x( x - 6 ) = 0
<=> x = 0 hoặc x = 6
b) ( x + 3 )( x + 2 ) - ( x - 2 )( x + 5 ) = 0
<=> x2 + 5x + 6 - ( x2 + 3x - 10 ) = 0
<=> x2 + 5x + 6 - x2 - 3x + 10 = 0
<=> 2x + 16 = 0
<=> 2x = -16
<=> x = -8
Bài 3.
A = ( n2 + 3n - 1 )( n + 2 ) - n3 + 2
= n3 + 2n2 + 3n2 + 6n - n - 2 - n3 + 2
= 5n2 + 5n
= 5n( n + 1 ) chia hết cho 5 ( đpcm )
B = ( 6n + 1 )( n + 5 ) - ( 3n + 5 )( 2n - 1 )
= 6n2 + 30n + n + 5 - ( 6n2 - 3n + 10n - 5 )
= 6n2 + 31n + 5 - 6n2 - 7n + 5
= 24n + 10
= 2( 12n + 5 ) chia hết cho 2 ( đpcm )
bài 1:a,\(2x^2+3\left(x-1\right)\left(x+1\right)-5x\left(x+1\right)\)
\(=2x^2+3x^2-3-5x^2-5x\)
\(=-3-5x\)
b.\(4\left(x-1\right)\left(x+5\right)-\left(x-2\right)\left(x+5\right)-3\left(x-1\right)\left(x+2\right)\)
\(=4\left(x^2+4x-5\right)-\left(x^2+3x-10\right)-3\left(x^2+x-2\right)\)
\(=4x^2+16x-20-x^2-3x+10-3x^2-3x+6\)
\(=10x-4\)
\(\left(8-5x\right)\left(x+2\right)+4\left(x-2\right)\left(x+1\right)+2\left(x-2\right)\left(x+2\right)=0\)
\(8x+16-5x^2-10x+4\left(x^2+x-2x-2\right)+2\left(x^2+2x-2x-4\right)=0\)
\(-2x+16-5x^2+4x^2-4x-8+2x^2-8=0\)
\(x^2-6x=0\)
\(x\left(x-6\right)=0\)
\(\orbr{\begin{cases}x=0\\x-6=0\end{cases}\Rightarrow\orbr{\begin{cases}x=0\\x=6\end{cases}}}\)
a) ( x + 1 )( x + 2 )( x + 3 )( x + 4 ) - 15
= [ ( x + 1 )( x + 4 ) ][ ( x + 2 )( x + 3 ) ] - 15
= ( x2 + 5x + 4 )( x2 + 5x + 6 ) - 15 (*)
Đặt t = x2 + 5x + 4
(*) trở thành
t( t + 2 ) - 15
= t2 + 2t - 15
= t2 - 3t + 5t - 15
= t( t - 3 ) + 5( t - 3 )
= ( t - 3 )( t + 5 )
= ( x2 + 5x + 4 - 3 )( x2 + 5x + 4 + 5 )
= ( x2 + 5x + 1 )( x2 + 5x + 9 )
b) ( x + 2 )( x + 3 )2( x + 4 ) - 12
= [ ( x + 2 )( x + 4 ) ]( x + 3 )2 - 12
= ( x2 + 6x + 8 )( x2 + 6x + 9 ) - 12 (*)
Đặt t = x2 + 6x + 8
(*) trở thành
t( t + 1 ) - 12
= t2 + t - 12
= t2 - 3t + 4t - 12
= t( t - 3 ) + 4( t - 3 )
= ( t - 3 )( t + 4 )
= ( x2 + 6x + 8 - 3 )( x2 + 6x + 8 + 4 )
= ( x2 + 6x + 5 )( x2 + 6x + 12 )
= ( x2 + x + 5x + 5 )( x2 + 6x + 12 )
= [ x( x + 1 ) + 5( x + 1 ) ]( x2 + 6x + 12 )
= ( x + 1 )( x + 5 )( x2 + 6x + 12 )
a, Gọi\(A=\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)-15\)
\(=\left(x^2+5x+4\right)\left(x^2+5x+6\right)-15\)
Đặt\(y=x^2+5x+4\)
\(\Rightarrow A=y\left(y+2\right)-15\)
\(=y^2+2y-15\)
\(=\left(x-3\right)\left(x+5\right)\)
Hay\(A=\left(x^2+5x+1\right)\left(x^2+5x+9\right)\)
Vậy...
b,Gọi\(B=\left(x+2\right)\left(x+3\right)^2\left(x+4\right)-12\)
\(=\left(x^2+6x+8\right)\left(x^2+6x+9\right)-12\)
Đặt\(z=x^2+6x+8\)
\(\Rightarrow B=z\left(z+1\right)-12\)
\(=z^2+z-12\)
\(=\left(z-3\right)\left(z+4\right)\)
Hay\(B=\left(x^2+6x+5\right)\left(x^2+6x+12\right)\)
Vậy...
Linz
cái gì vậy bạn
? bài ở đâu