giải hộ mikmiktick cho
cho tam giác abc, các đưởng trung tuyến bd và ce cắt nhau tại g. gọi i,k theo thứ tự là trung điểm của gb , gc. cm de song song ik và de=ik
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
( a2 + b2 )( c2 + d2 )
= a2c2 + a2d2 + b2c2 + b2d2
= ( a2c2 + 2abcd + b2d2 ) + ( a2d2 - 2abcd + b2c2 )
= ( ac + bd )2 + ( ad - bc )2
C = x2 + 4x + y2 - 6y + 11 ( sửa -y2 => +y2 chứ để như kia không tìm được :)) )
= ( x2 + 4x + 4 ) + ( y2 - 6y + 9 ) - 2
= ( x + 2 )2 + ( y - 3 )2 - 2 ≥ -2 ∀ x, y
Đẳng thức xảy ra <=> x = -2 ; y = 3
=> MinC = -2 <=> x = -2 ; y = 3
Sửa đề C = - x2 - 4x - y2 - 6y + 11
<=> C = - ( x2 + 4x + 4 ) - ( y2 + 6y + 9 ) + 24
<=> C = \(-\left(x+2\right)^2-\left(y+3\right)^2+16\le16\)
Dấu "=" xảy ra <=> \(\orbr{\begin{cases}-\left(x+2\right)^2=0\\-\left(y+3\right)^2=0\end{cases}}\)<=>\(\orbr{\begin{cases}x=-2\\y=-3\end{cases}}\)
Vậy maxC = 24 <=> x = - 2 ; y = - 3
a) \(x^3=x^5\)
=> \(x^3-x^5=0\)
=> \(x^3\left(1-x^2\right)=0\)
=> \(\orbr{\begin{cases}x^3=0\\1-x^2=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x^2=1\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=\pm1\end{cases}}\)
b) \(4x\left(x+1\right)=x+1\)
=> \(4x^2+4x-x-1=0\)
=> \(4x\left(x+1\right)-1\left(x+1\right)=0\)
=> \(\left(x+1\right)\left(4x-1\right)=0\Rightarrow\orbr{\begin{cases}x=-1\\x=\frac{1}{4}\end{cases}}\)
c) \(x\left(x-1\right)-2\left(1-x\right)=0\)
=> \(x\left(x-1\right)-\left[-2\left(x+1\right)\right]=0\)
=> \(x\left(x-1\right)+2\left(x-1\right)=0\)
=> \(\left(x-1\right)\left(x+2\right)=0\Rightarrow\orbr{\begin{cases}x=1\\x=-2\end{cases}}\)
d) Kết quả ?
e) \(\left(x-3\right)^2+3-x=0\)
=> \(x^2-6x+9+3-x=0\)
=> \(x^2-7x+12=0\)
=> \(x^2-3x-4x+12=0\)
=> \(x\left(x-3\right)-4\left(x-3\right)=0\)
=> (x - 4)(x - 3) = 0
=> \(\orbr{\begin{cases}x=4\\x=3\end{cases}}\)
f) Tương tự
a) \(501^2=\left(500+1\right)^2=250000+1000+1=251001\)
b) \(99^2=\left(100-1\right)^2=10000-200+1=9801\)
c) \(76.42=\left(59+17\right)\left(59-17\right)=59^2-17^2=3481-289=3192\)
Bài làm :
\(501^2=\left(500+1\right)^2=250000+1000+1=251001\)
\(b,99^2=\left(100-1\right)^2=10000-200+1=9801\)
\(c,76.42=\left(59+17\right)\left(59-17\right)=59^2-17^2=3192\)
Học tốt
Bài làm :
\(x.\left(2x^3+x+2\right)-2x^2.\left(x^2+1\right)+x^2-2x+1\)
\(=2x^4+x^2+2x-2x^4-2x^2+x^2-2x+1\)
\(=\left(2x^4-2x^4\right)+\left(x^2-2x^2+x^2\right)+\left(2x-2x\right)+1\)
\(=1\)
Vậy giá trị của biểu thức không phụ thuộc vào giá trị của biến x .
Học tốt
giả sử c chẵn khi đó ta có:
\(v_2\left(c\right)=v_2\left(5c+2b\right)+v_2\left(2c+b\right)\)
Nếu b lẻ thì ta có: \(v_2\left(c\right)=v_2\left(5c+2b\right)=v_2\left(5c\right)\Rightarrow v_2\left(5c\right)< v_2\left(2b\right)=1\)
Điều này vô lý!
Do đó c lẻ: Xét p|c là 1 ước nguyên tố của c
Ta có: \(v_p\left(c\right)=v_p\left(5c+2b\right)+v_p\left(2c+b\right)\)
Ta thấy \(v_p\left(c\right)>v_p\left(5c+2b\right);v_p\left(2c+b\right)>0\)
Do đó: \(v_p\left(5c+2b\right)=min\left[v_p\left(c\right);v_p\left(4c+2b\right)\right]\)
\(\Rightarrow v_p\left(5c+2b\right)=v_p\left(4c+2b\right)=v_p\left(2c+b\right)\)
\(\Rightarrow v_p\left(c\right)=2v_p\left(5c+2b\right):\)số chẵn nên => c là số chính phương.(đpcm)
Bài làm :
\(x\left(3+x\right)\left(4-x\right)+\left(x-5\right)\left(x^2+5x+25\right)\)
\(=\left(3x+x^2\right)\left(4-x\right)+x^3+5x^2+25x-5x^2-25x-125\)
\(=12x-3x^2+4x^2-x^3+x^3-125\)
\(=x^2+12x-125\)
Học tốt
tim mot so tu nhien 6 chu so biet rang chu so neu chuyen chu so hang don vi la 4 va neu chuyen chu so do nen hang dau tien thi so do tang gap 4 lan