K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 9 2020

tim mot so tu nhien 6 chu so biet rang chu so neu chuyen chu so hang don vi la 4 va neu chuyen chu so do nen hang dau tien thi so do tang gap 4 lan

23 tháng 9 2020

( a2 + b2 )( c2 + d2 )

= a2c2 + a2d2 + b2c2 + b2d2

= ( a2c2 + 2abcd + b2d2 ) + ( a2d2 - 2abcd + b2c2 )

= ( ac + bd )2 + ( ad - bc )2

23 tháng 9 2020

C = x2 + 4x + y2 - 6y + 11 ( sửa -y2 => +y2 chứ để như kia không tìm được :)) )

= ( x2 + 4x + 4 ) + ( y2 - 6y + 9 ) - 2

= ( x + 2 )2 + ( y - 3 )2 - 2 ≥ -2 ∀ x, y

Đẳng thức xảy ra <=> x = -2 ; y = 3

=> MinC = -2 <=> x = -2 ; y = 3

23 tháng 9 2020

Sửa đề C = - x2 - 4x - y2 - 6y + 11

<=> C = - ( x2 + 4x + 4 ) - ( y2 + 6y + 9 ) + 24

<=> C = \(-\left(x+2\right)^2-\left(y+3\right)^2+16\le16\)

Dấu "=" xảy ra <=> \(\orbr{\begin{cases}-\left(x+2\right)^2=0\\-\left(y+3\right)^2=0\end{cases}}\)<=>\(\orbr{\begin{cases}x=-2\\y=-3\end{cases}}\)

Vậy maxC = 24 <=> x = - 2 ; y = - 3

24 tháng 9 2020

a) \(x^3=x^5\)

=> \(x^3-x^5=0\)

=> \(x^3\left(1-x^2\right)=0\)

=> \(\orbr{\begin{cases}x^3=0\\1-x^2=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x^2=1\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=\pm1\end{cases}}\)

b) \(4x\left(x+1\right)=x+1\)

=> \(4x^2+4x-x-1=0\)

=> \(4x\left(x+1\right)-1\left(x+1\right)=0\)

=> \(\left(x+1\right)\left(4x-1\right)=0\Rightarrow\orbr{\begin{cases}x=-1\\x=\frac{1}{4}\end{cases}}\)

c) \(x\left(x-1\right)-2\left(1-x\right)=0\)

=> \(x\left(x-1\right)-\left[-2\left(x+1\right)\right]=0\)

=> \(x\left(x-1\right)+2\left(x-1\right)=0\)

=> \(\left(x-1\right)\left(x+2\right)=0\Rightarrow\orbr{\begin{cases}x=1\\x=-2\end{cases}}\)

d) Kết quả ?

e) \(\left(x-3\right)^2+3-x=0\)

=> \(x^2-6x+9+3-x=0\)

=> \(x^2-7x+12=0\)

=> \(x^2-3x-4x+12=0\)

=> \(x\left(x-3\right)-4\left(x-3\right)=0\)

=> (x - 4)(x - 3) = 0

=> \(\orbr{\begin{cases}x=4\\x=3\end{cases}}\)

f) Tương tự

23 tháng 9 2020

Ta có : \(C+5D=4x+3y+5.\left(7x+2y\right)\)

\(=4x+3y+35x+10y\)

\(=39x+13y⋮13\)

\(\Rightarrow C+5D⋮13\)

Mà  \(C⋮13\Rightarrow5D⋮13\Rightarrow D⋮13\left(đpcm\right)\)

a) \(501^2=\left(500+1\right)^2=250000+1000+1=251001\)

b) \(99^2=\left(100-1\right)^2=10000-200+1=9801\)

c) \(76.42=\left(59+17\right)\left(59-17\right)=59^2-17^2=3481-289=3192\)

Bài làm :

\(501^2=\left(500+1\right)^2=250000+1000+1=251001\)

\(b,99^2=\left(100-1\right)^2=10000-200+1=9801\)

\(c,76.42=\left(59+17\right)\left(59-17\right)=59^2-17^2=3192\)

Học tốt

Bài làm :

\(x.\left(2x^3+x+2\right)-2x^2.\left(x^2+1\right)+x^2-2x+1\)

\(=2x^4+x^2+2x-2x^4-2x^2+x^2-2x+1\)

\(=\left(2x^4-2x^4\right)+\left(x^2-2x^2+x^2\right)+\left(2x-2x\right)+1\)

\(=1\)

Vậy giá trị của biểu thức không phụ thuộc vào giá trị của biến x .

Học tốt

23 tháng 9 2020

giả sử c chẵn khi đó ta có:

\(v_2\left(c\right)=v_2\left(5c+2b\right)+v_2\left(2c+b\right)\)

Nếu b lẻ thì ta có: \(v_2\left(c\right)=v_2\left(5c+2b\right)=v_2\left(5c\right)\Rightarrow v_2\left(5c\right)< v_2\left(2b\right)=1\)

Điều này vô lý!

Do đó c lẻ: Xét p|c là 1 ước nguyên tố của c

Ta có: \(v_p\left(c\right)=v_p\left(5c+2b\right)+v_p\left(2c+b\right)\)

Ta thấy \(v_p\left(c\right)>v_p\left(5c+2b\right);v_p\left(2c+b\right)>0\)

Do đó: \(v_p\left(5c+2b\right)=min\left[v_p\left(c\right);v_p\left(4c+2b\right)\right]\)

\(\Rightarrow v_p\left(5c+2b\right)=v_p\left(4c+2b\right)=v_p\left(2c+b\right)\)

\(\Rightarrow v_p\left(c\right)=2v_p\left(5c+2b\right):\)số chẵn nên => c là số chính phương.(đpcm)

Bài làm :

\(x\left(3+x\right)\left(4-x\right)+\left(x-5\right)\left(x^2+5x+25\right)\)

\(=\left(3x+x^2\right)\left(4-x\right)+x^3+5x^2+25x-5x^2-25x-125\)

\(=12x-3x^2+4x^2-x^3+x^3-125\)

\(=x^2+12x-125\)

Học tốt