giải phương trình
\(8x^2+16x-20-\sqrt{x+15}=0\)
\(\sqrt{x+9}=\sqrt{x}+\frac{2\sqrt{2}}{\sqrt{x+1}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài làm
~ mik không chắc nha ~
3x² + 65 = 2x( 17 - √2x - 1 )
<=> 34x - 3x² - 65 - 2x√2x - 1 = 0
<=> ( 2x - 1 ) - ( 3x - 8 - x + 2 ) . √2x - 1 - 3x² + 32x - 64 = 0
<=> ( 2x - 1 ) - ( 3x - 8 - x + 8 ) . √2x - 1 + ( 8 - 3x )( x - 8 ) = 0
<=> ( √2x - 1 - 3x + 8 )( √2x - 1 + x - 8 ) = 0
<=> √2x - 1 - 3x + 8 = 0 hoặc √2x - 1 + x - 8 = 0
Tự làm tiếp nha.
\(\hept{\begin{cases}x^2+y^2-xy=2\\x^3=x+y\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x^2+y^2-xy=2\\x^3-x=y\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x^2+\left(x^3-x\right)^2-x\left(x^3-x\right)=2\\x^3-x=y\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x^6-3x^4+3x^2-1=1\left(@\right)\\x^3-x=y\end{cases}}\)
Đặt \(x^2=t\left(\ge0\right)\)
\(\Rightarrow@\Leftrightarrow\)
\(t^3-3t^2.1+3t.1^2-1=1\)
\(\Leftrightarrow\left(t-1\right)^3=1\)
\(\Leftrightarrow t-1=1\)
...
Pt hoành độ:
\(\frac{-x}{2}+3=3x\Leftrightarrow-x+6=6x\Leftrightarrow-x+6-6x=0\)
Giải ra thì \(x=\frac{6}{7}\) . Thế vào lại y = 3x => \(y=\frac{18}{7}\)
Vậy toạ độ giao điểm của 2 đường thẳng trên là (x;y)= (6/7 ; 18/7)
Hoành độ giao điểm là nghiệm của phương trình
\(\frac{-x}{2}+3=3x\)
-x+6 = 6x
6x + x =6
7x=6
x=6/7
y=3.6/7=18/7
Vậy A(6/7; 18/7)
a) ĐK: \(x\ge-15\)
\(8x^2+16x-20-\sqrt{x+15}=0\)
<=> \(8x^2+16x-20=\sqrt{x+15}\)
=> \(64x^4+256x^2+400+256x^3-640x-320x^2=x+15\)
<=> \(64x^4+256x^3-64x^2-641x+385=0\)
<=> \(4x^2\left(16x^2+36x-35\right)+7x\left(16x^2+36x-35\right)-11\left(16x^2-36x-35\right)=0\)
<=> \(\left(16x^2+36x-35\right)\left(4x^2+7x-11\right)=0\)
<=> \(\orbr{\begin{cases}16x^2+36x-35=0\\4x^2+7x-11=0\end{cases}}\)
+) TH1: \(16x^2+36x-35=0\Leftrightarrow x=\frac{-9\pm\sqrt{221}}{8}\)( tmđk)
+) TH2: \(4x^2+7x-11=0\Leftrightarrow\orbr{\begin{cases}x=1\\x=-\frac{11}{4}\end{cases}}\)(tmđk)
THử từng nghiệm vào bài toán ban đầu ta chỉ 2 nghiệm x = 1 và \(x=\frac{-9-\sqrt{221}}{8}\)là đúng
Vậy phương trình có hai nghiệm:....