Không giải phương trình 2x2 - 4x -1=0. Hãy Tính
a) Hiệu 2 nghiệm.
b) hiệu các bình phương của 2 nghiệm
c) hiệu các bình phương của 2 nghiệm
ai giúp mk vs ạ mai mk phải nộp bài r ạ Thank ạ !
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số học sinh vào giáo viên tham quan lần lượt là a và b. Theo đề bài, ta có:
a+b=250(1)
40000a+25000b=6550000(2)
Thay (1) vào (2), ta có:
25000(a+b)+15000=6550000
25000.250+15000a=6550000
6250000+15000a=6550000
15000a=300000
a=20
=>b=250-20=230
Vậy có 20 GV phụ trách và 230 HS tham gia.
Gọi số học sinh là x: số giáo viên là y
đk: \(0< x,y< 250;x,y\in N\)
Vì tổng số người tham quan là 250 nên ta có phương trình:
\(x+y=250\left(1\right)\)
Vì tổng số tiền mua vé là 6 550 000đ mà vé vào cổng của giáo viên học sinh lần lượt là 40000đ và 25000đ nên ta có phương trình:
\(25000x+40000y=6550000\left(2\right)\)
Từ (1); (2) ta có hệ phương trình:
\(\hept{\begin{cases}x+y=250\\25000x+40000y=6550000\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=250-y\\25000\left(250-y\right)+40000y=6550000\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=230\\y=20\end{cases}}\)(TMĐK)
Vậy ...
\(x^2-6x+9=0\) (1)
\(\Leftrightarrow\left(x-3\right)^2=0\)
\(\Leftrightarrow x-3=0\)
\(\Leftrightarrow x=3\)
Vậy tập nghiệm của phương trình (1) là \(S=\left\{3\right\}\)
\(x^3-6x^2+11x-6=0\)
\(\Leftrightarrow\left(x^3-3x^2\right)-\left(3x^2-9x\right)+\left(2x-6\right)=0\)
\(\Leftrightarrow x^2\left(x-3\right)-3x\left(x-3\right)+2\left(x-3\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(x^2-3x+2\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(x-1\right)\left(x-2\right)=0\)
\(\Leftrightarrow\)\(x=3\)
hoặc \(x=1\)
hoặc \(x=2\)
Vậy tập nghiệm của phương trình (2) là \(S=\left\{1;2;3\right\}\)
Mà 2 phương trình trên có 1 nghiệm chung
\(\Rightarrow\)Tập nghiệm của 2 phương trình là \(S=\left\{3\right\}\)
Cho 3 số thực dương a;b;c thỏa mãn : a+ b + c = 1 . CMR
\(\frac{a+1}{a+b+c}+\frac{b+1}{b+ac}+\frac{c+1}{c+ab}\ge9\)Dấu " = " xay ra khi nào
câu 2 câu 3 nè
2) a) (ac+bd)2+(ad−bc)2=(ac)2+(bd)2+2ac.bd+(ad)2+(bc)2−2ad.bc=(a2+b2)(c2+d2)(ac+bd)2+(ad−bc)2=(ac)2+(bd)2+2ac.bd+(ad)2+(bc)2−2ad.bc=(a2+b2)(c2+d2)
b) Chuyển vế rồi khai triển, search trên mạng cũng có
3) Áp dụng BĐT Bunyakovsky, ta có:
x2+y2≥(x+y)22=222=2
\(\hept{\begin{cases}\left(m+2\right)x+2y=5\\mx-y=1\end{cases}\Leftrightarrow\hept{\begin{cases}\left(m+2\right)x+2y=5\left(1\right)\\2mx-2y=2\left(2\right)\end{cases}}}\)
Lấy (1) +(2) có:
\(\left(m+2\right)x+2mx=7\)
\(\Leftrightarrow\left(m+2+2m\right)x=7\)
\(\Leftrightarrow\left(3m+2\right)x=7\)
\(\Leftrightarrow x=\frac{7}{3m+2}\)
Để hệ có nghiệm nguyên duy nhất thì 3m+2 \(\ne\)0 <=> m\(\ne\frac{-2}{3}\)
\(m\inℤ\Rightarrow3m+2\inƯ\left(7\right)=\left\{-7;-1;1;7\right\}\)
ta có bảng
3m+2 | -7 | -1 | 1 | 7 |
m | \(\frac{-1}{3}\) | -1 | \(\frac{5}{3}\) | -3 |
Vì m\(\in\)Z => m=-1; m=-3
Cả 3 bài này đều sử dụng định lí Pascal
B1: Với các điểm: NAMCIB cùng thuộc đường tròn (O)
NC cắt BM tại H; NI cắt AB tại P ; MI cắt AC tại Q
=> P; H ; Q thẳng hàng
B2: Xét các điểm ADCIBE cùng thuộc đường tròn (O)
B3: Tương tự.