cho các số a,b,c đòng thời thỏa mãn\(a+b+c=3\)và\(a^2+b^2+c^2=3\)tính\(P=\left(a-2\right)^{2019}+\left(b-2\right)^{2020}+\left(c-2\right)^{2021}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(50\left(y+4\right)^2-18\left(y-2\right)^2\)
\(=50\left(y^2+8y+16\right)-18\left(y^2-4y+4\right)\)
\(=50y^2+400y+800-18y^2+72y-72\)
\(=32y^2+472y+728\)
B1
Ta có
\(A=\frac{a^2}{24}+\frac{9}{a}+\frac{9}{a}+\frac{23a^2}{24}\ge3\sqrt[3]{\frac{a^2}{24}.\frac{9}{a}.\frac{9}{a}+\frac{23a^2}{24}}\ge\frac{9}{2}+\frac{23.36}{24}\ge39\)
Dấu "=" xảy ra <=> a=6
Vậy Min A = 39 <=> a=6
\(A=a^2+\frac{18}{a}=a^2+\frac{216}{a}+\frac{216}{a}-\frac{414}{a}\ge3\sqrt[3]{a^2.\frac{216}{a}.\frac{216}{a}}-69=39\)
Đẳng thức xảy ra khi a = 6
Bài 2 :
a. A = 2 ( x3 + y3 ) - 3 ( x2 + y2 ) với x + y = 1
=> A = 2 ( x + y ) ( x2 - xy + y2 ) - 3 [ ( x + y )2 - 2xy ]
=> A = 2 [ ( x + y )2 - 3xy ] - 3 ( 1 - 2xy )
=> A = 2 ( 1 - 3xy ) - 3 + 6xy
=> A = 2 - 6xy - 3 + 6xy
=> A = - 1
B = x3 + y3 + 3xy với x + y = 1
=> B = ( x3 + 3x2y + 3xy2 + y3 ) - ( 3x2y + 3xy2 - 3xy )
=> B = ( x + y )3 - 3xy ( x + y - 1 )
=> B = 13 - 3xy . 0
=> B = 1
Bài 1.
a) ( x - 1 )3 + ( 2 - x )( 4 + 2x + x2 ) + 3x( x + 2 ) = 16
<=> x3 - 3x2 + 3x - 1 + 8 - x3 + 3x2 + 6x = 16
<=> 9x + 7 = 16
<=> 9x = 9
<=> x = 1
b) ( x + 2 )( x2 - 2x + 4 ) - x( x2 - 2 ) = 15
<=> x3 + 8 - x3 + 2x = 15
<=> 2x + 8 = 15
<=> 2x = 7
<=> x = 7/2
c) ( x - 3 )3 - ( x - 3 )( x2 + 3x + 9 ) + 9( x + 1 )2 = 15
<=> ( x - 3 )[ ( x - 3 )2 - ( x2 + 3x + 9 ) + 9( x2 + 2x + 1 ) = 15
<=> ( x - 3 )( x2 - 6x + 9 - x2 - 3x - 9 ) + 9x2 + 18x + 9 = 15
<=> ( x - 3 ).(-9x) + 9x2 + 18x + 9 = 15
<=> -9x2 + 27x + 9x2 + 18x + 9 = 15
<=> 45x + 9 = 15
<=> 45x = 6
<=> x = 6/45 = 2/15
d) x( x - 5 )( x + 5 ) - ( x + 2 )( x2 - 2x + 4 ) = 3
<=> x( x2 - 25 ) - ( x3 + 8 ) = 3
<=> x3 - 25x - x3 - 8 = 3
<=> -25x - 8 = 3
<=. -25x = 11
<=> x = -11/25
Bài 2.
a) A = 2( x3 + y3 ) - 3( x2 + y2 )
= 2( x + y )( x2 - xy + y2 ) - 3x2 - 3y2
= 2( x2 - xy + y2 ) - 3x2 - 3y2
= 2x2 - 2xy + 2y2 - 3x2 - 3y2
= -x2 - 2xy - y2
= -( x2 + 2xy + y2 )
= -( x + y )2
= -(1)2 = -1
b) B = x3 + y3 + 3xy
= x3 + 3x2y + 3xy2 + y3 - 3x2y - 3xy2 + 3xy
= ( x3 + 3x2y + 3xy2 + y3 ) - ( 3x2y + 3xy2 - 3xy )
= ( x + y )3 - 3xy( x + y - 1 )
= 13 - 3xy( 1 - 1 )
= 1 - 3xy.0
= 1
2x( x + 1 ) - 5x - 10 = 0
<=> 2x2 + 2x - 5x - 10 = 0
<=> 2x2 - 3x - 10 = 0
<=> 2( x2 - 3/2x + 9/16 ) - 89/8 = 0
<=> 2( x - 3/4 )2 = 89/8
<=> ( x - 3/4 )2 = 89/16
<=> \(\left(x-\frac{3}{4}\right)^2=\left(\pm\sqrt{\frac{89}{16}}\right)^2=\left(\pm\frac{\sqrt{89}}{4}\right)^2\)
<=> \(\orbr{\begin{cases}x-\frac{3}{4}=\frac{\sqrt{89}}{4}\\x-\frac{3}{4}=-\frac{\sqrt{89}}{4}\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{3+\sqrt{89}}{4}\\x=\frac{3-\sqrt{89}}{4}\end{cases}}\)
a. (x + 2y)2
= x2 + 4xy + 4y2 (hằng đẳng thức thứ nhất)
b. (x - 3y)(x + 3y)
= x2 - 9y2 (hằng đẳng thức thứ 3)
c. (5 - x)2
= 25 - 10x + x2 (hằng đẳng thức thứ 2)
Từ nay về sau bạn cố gắng tự làm những bài về hằng đẳng thức để tránh mất gốc nhé!
\(a.\left(x+2y\right)^2\)
\(=x^2+2.x.2y+\left(2y\right)^2\)
\(=x^2+4xy+4y^2\)
\(b.\left(x-3y\right)\left(x+3y\right)\)
\(=x^2-\left(3y\right)^2\)
\(=x^2-9y^2\)
\(c.\left(5-x\right)^2\)
\(=5^2-2.5.x+x^2\)
\(=25-10x+x^2\)
Học tốt! :)
Làm hai trường hợp nhé :v trúng cái nào thì trúng
1. x3 - x = 0
<=> x( x2 - 1 ) = 0
<=> x( x - 1 )( x + 1 ) = 0
<=> x = 0 hoặc x - 1 = 0 hoặc x + 1 = 0
<=> x = 0 hoặc x = ±1
2. x3 + x = 0
<=> x( x2 + 1 ) = 0
<=> x = 0 hoặc x2 + 1 = 0
<=> x = 0 < vì x2 + 1 ≥ 1 > 0 ∀ x >
Ta có: \(2ax^3+6ax^2+6ax+18a\)
\(=2\left[\left(ax^3+3ax^2\right)+\left(3ax+9a\right)\right]\)
\(=2a\left[x^2\left(x+3\right)+3\left(x+3\right)\right]\)
\(=2a\left(x+3\right)\left(x^2+3\right)\)
2ax3 + 6ax2 + 6ax + 18a
= 2a( x3 + 3x2 + 3x + 9 )
= 2a[ ( x3 + 3x2 ) + ( 3x + 9 ) ]
= 2a[ x2( x + 3 ) + 3( x + 3 ) ]
= 2a( x + 3 )( x2 + 3 )
Ta có: \(a+b+c=3\Rightarrow a^2+b^2+c^2+2\left(ab+bc+ca\right)=9\)
\(\Rightarrow2\left(ab+bc+ca\right)=9-\left(a^2+b^2+c^2\right)=6\Rightarrow ab+bc+ca=3\)
\(\Rightarrow a^2+b^2+c^2=ab+bc+ca\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\Leftrightarrow a=b=c\)
Mà a + b + c = 3 nên a = b = c = 1
Suy ra \(P=\left(-1\right)^{2019}+\left(-1\right)^{2020}+\left(-1\right)^{2021}=-1\)