Cho a, b, c >= 0 thỏa mãn a + b + c = 1. Tìm giá trị lớn nhất của biểu thức : P = abc (a^2 + b^2 + c^2)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Từ giả thiết suy ra: \(a\left(b-c\right)=c\left(a-b\right)\left(1\right)\)
Ta có: \(\frac{1}{c}+\frac{1}{a-b}=\frac{a-b+c}{c\left(a-b\right)}\left(2\right)\)
\(\frac{1}{b-c}-\frac{1}{a}=\frac{a-b+c}{a\left(b-c\right)}\left(3\right)\)
Từ 1,2,3 => đpcm
ĐK : x ∈ Q
Đặt x2 + x + 6 = k2 ( k ∈ N )
=> 4( x2 + x + 6 ) = 4k2
=> 4x2 + 4x + 24 = 4k2
=> ( 4x2 + 4x + 1 ) + 23 = 4k2
=> ( 2x + 1 )2 + 23 = 4k2
=> 4k2 - ( 2x + 1 )2 - 23 = 0
=> ( 2k )2 - ( 2x + 1 )2 = 23
=> ( 2k - 2x - 1 )( 2k + 2x + 1 ) = 23
Xét các trường hợp :
1. \(\hept{\begin{cases}2k-2x-1=1\\2k+2x+1=23\end{cases}}\Leftrightarrow\hept{\begin{cases}x=5\\k=6\end{cases}}\)( tm )
2. \(\hept{\begin{cases}2k-2x-1=-1\\2k+2x+1=-23\end{cases}}\Leftrightarrow x=k=-6\)( tm )
3. \(\hept{\begin{cases}2k-2x-1=23\\2k+2x+1=1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-6\\k=6\end{cases}}\)( tm )
4. \(\hept{\begin{cases}2k-2x-1=-23\\2k+2x+1=-1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=5\\k=-6\end{cases}}\)( tm )
=> x ∈ { 5 ; -6 } thì x2 + x + 6 là một số chính phương
Ta có: \(\left(\sqrt{14}+\sqrt{10}\right)\sqrt{6-\sqrt{35}}-2\)
\(=\sqrt{2}\cdot\left(\sqrt{7}+\sqrt{5}\right)\sqrt{6-\sqrt{35}}-2\)
\(=\left(\sqrt{7}+\sqrt{5}\right)\sqrt{12-2\sqrt{35}}-2\)
\(=\left(\sqrt{7}+\sqrt{5}\right)\sqrt{7-2\sqrt{35}+5}-2\)
\(=\left(\sqrt{7}+\sqrt{5}\right)\sqrt{\left(\sqrt{7}-\sqrt{5}\right)^2}-2\)
\(=\left(\sqrt{7}+\sqrt{5}\right)\left(\sqrt{7}-\sqrt{5}\right)-2\)
\(=7-5-2\)
\(=0\)
Bài làm:
a) Gọi t (h) là thời gian từ khi xuất phát đến khi cả 2 xe gặp nhau
Quãng đường xe đi từ A đến B đi được là: 36.t (km)
Quãng đường xe đi từ B về A đi được là: 54.t (km)
Từ đó ta có phương trình sau:
\(36t+54t=150\)
\(\Leftrightarrow90t=150\)
\(\Rightarrow t=\frac{5}{3}\left(h\right)\approx1,7\left(h\right)\)
Vậy khoảng lúc: 6 + 1,7 = 7,7 = 7 giờ 42 phút thì 2 xe gặp nhau
b) Đổi 30 phút = 0,5 giờ
Vì ô tô thứ 2 xuất phát sau ô tô thứ nhất nên khi ô tô thứ 2 khởi hành thì khoảng cách giữa chúng là:
\(150-0,5\cdot36=132\left(km\right)\)
Gọi m là thời gian từ khi xe thứ 2 khởi hành đến khi cả 2 xe gặp nhau, khi đó:
Quãng đường sau khi xe thứ 2 xuất phát của xe 1 đi được là: 36.m (km)
Quãng đường xe thứ 2 đi được đến khi gặp xe thứ nhất là: 54.m (km)
Từ đó ta có phương trình sau:
\(36.m+54.m=132\)
\(\Leftrightarrow90.m=132\)
\(\Rightarrow m=\frac{22}{15}\left(h\right)\approx1,5\left(h\right)\)
Vậy khoảng lúc: 6 + 0,5 + 1,5 = 8 giờ thì 2 xe gặp nhau
1) \(2x^3-8x=0\)
\(\Leftrightarrow2x\left(x^2-4\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x^2-4=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x^2=4\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=\pm2\end{cases}}\)
Vậy \(x\in\left\{0;\pm2\right\}\)
2) \(2x\left(x-15\right)-4\left(x-15\right)=0\)
\(\Leftrightarrow\left(2x-4\right)\left(x-15\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}2x-4=0\\x-15=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=2\\x=15\end{cases}}\)
Vậy \(x\in\left\{2;15\right\}\)
1
\(2x^3-8x=0\)
\(2x\left(x^2-4\right)=0\)
\(\orbr{\begin{cases}2x=0\\x^2-4=0\end{cases}}\)
\(\orbr{\begin{cases}x=0\\x^2=4\end{cases}}\)
\(\orbr{\begin{cases}x=0\\x=\pm2\end{cases}}\)
2
\(2x\left(x-15\right)-4\left(x-15\right)=0\)
\(\left(2x-4\right)\left(x-15\right)=0\)
\(\orbr{\begin{cases}2x-4=0\\x-15=0\end{cases}}\)
\(\orbr{\begin{cases}2x=4\\x=0+15\end{cases}}\)
\(\orbr{\begin{cases}x=2\\x=15\end{cases}}\)
Vi a + b + c = 1 nên bt tương đương với \(P=abc\left(a+b+c\right)\left(a^2+b^2+c^2\right)\)
Ta có : \(P=abc\left(a+b+c\right)\left(a^2+b^2+c^2\right)\le\frac{1}{3}\left(ab+bc+ca\right)^2\left(a^2+b^2+c^2\right)\)( 1 )
Mặt khác :\(\left(ab+bc+ca\right)^2\left(a^2+b^2+c^2\right)\le\left(\frac{\left(a+b+c\right)^2}{3}\right)^3=\frac{1}{27}\)( 2 )
Từ ( 1 ) và ( 2 ) \(\Rightarrow P\le\frac{1}{3}.\frac{1}{27}=\frac{1}{81}\)
Dấu "=" xảy ra <=> a = b = c = 1/3
Vậy maxP = 1/81 <=> a = b = c = 1/3