Tìm dư trg phép chia:
\(a,f\left(x\right)=1+x+x^{99}+x^{199}+x^{2019}\)cho \(1-x^2\)
b,\(\left(x+1\right)\left(x+3\right)\left(x+5\right)\left(x+7\right)+2019\)cho \(x^2+8x+12\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
PTKA = 2H + 1S + 4O
= 2.1 + 1.32 + 4.16
= 2 + 32 + 64
= 98
% khối lượng của 2H so với PTKA = \(\frac{2}{98}\cdot100=2,040...\approx2,04\%\)
% khối lượng của 1S so với PTKA = \(\frac{32}{98}\cdot100=32,653...\approx32,65\%\)
% khối lượng của 4O so với PTKA = \(\frac{64}{98}\cdot100=65,306...\approx65,31\%\)
Ta có: \(P=\frac{\sqrt{yz}}{x+2\sqrt{yz}}+\frac{\sqrt{zx}}{y+2\sqrt{zx}}+\frac{\sqrt{xy}}{z+2\sqrt{xy}}=\frac{1}{\frac{x}{\sqrt{yz}}+2}+\frac{1}{\frac{y}{\sqrt{zx}}+2}+\frac{1}{\frac{z}{\sqrt{xy}}+2}\)
Đặt \(\frac{x}{\sqrt{yz}}=c,\frac{y}{\sqrt{zx}}=t;\frac{z}{\sqrt{xy}}=k\left(c,t,k>0\right)\)thì ctk = 1
Ta cần tìm giá trị lớn nhất của \(P=\frac{1}{c+2}+\frac{1}{t+2}+\frac{1}{k+2}\)với ctk = 1
Dự đoán MaxP = 1 khi c = t = k = 1
Thật vậy: \(P=\frac{kt+2k+2t+4+ct+2c+2t+4+ck+2c+2k+4}{\left(c+2\right)\left(t+2\right)\left(k+2\right)}=\frac{\left(kt+tc+ck\right)+4\left(c+t+k\right)+12}{ctk+2\left(kt+tc+ck\right)+4\left(c+t+k\right)+8}\le\frac{\left(kt+tc+ck\right)+4\left(c+t+k\right)+12}{1+\left(kt+tc+ck\right)+3\sqrt[3]{\left(ctk\right)^2}+4\left(c+t+k\right)+8}=1\)Đẳng thức xảy ra khi x = y = z
Ta có: \(\frac{\sqrt{yz}}{x+2\sqrt{yz}}=\frac{1}{2}\left(1-\frac{x}{x+2\sqrt{yz}}\right)\le\frac{1}{2}\left(1-\frac{x}{x+y+z}\right)=\frac{1}{2}\left(\frac{y+z}{x+y+z}\right)\)(bđt cosi) (1)
CMTT: \(\frac{\sqrt{xz}}{y+2\sqrt{xz}}\le\frac{1}{2}\left(\frac{x+z}{x+y+z}\right)\)(2)
\(\frac{\sqrt{xy}}{z+2\sqrt{xy}}\le\frac{1}{2}\left(\frac{x+y}{x+y+z}\right)\)(3)
Từ (1), (2) và (3) cộng vế theo vế ta có:
\(\frac{\sqrt{yz}}{x+2\sqrt{yz}}+\frac{\sqrt{xz}}{y+2\sqrt{xz}}+\frac{\sqrt{xy}}{z+2\sqrt{xy}}\le\frac{1}{2}\left(\frac{y+z}{x+y+z}\right)+\frac{1}{2}\left(\frac{x+z}{x+y+z}\right)+\frac{1}{2}\left(\frac{x+y}{x+y+z}\right)\)
=> P \(\le\frac{1}{2}\left(\frac{y+z+x+z+x+y}{x+y+z}\right)=\frac{1}{2}\cdot\frac{2\left(x+y+z\right)}{x+y+z}=1\)
Dấu "=" xảy ra <=> x = y = z
Vậy MaxP = 1 <=> x = y = z
Áp dụng bất đẳng thức cô si
\(\frac{1}{a^3}+1+1\ge\frac{3}{a}\)
\(\frac{a^3}{b^3}+1+1\ge3\frac{a}{b}\)
\(b^3+1+1\ge3b\)
Do đó \(VT+6\ge VP+2\left(\frac{1}{a}+\frac{a}{b}+b\right)\ge VP+2.3=VP+6\Rightarrow VT\ge VP\left(đpcm\right)\)
Áp dụng BĐT Cauchy cho 3 số ta được:
\(\frac{1}{a^3}+1+1\ge3\sqrt[3]{\frac{1}{a^3}\cdot1\cdot1}=\frac{3}{a}\)
\(\frac{a^3}{b^3}+1+1\ge3\sqrt[3]{\frac{a^3}{b^3}\cdot1\cdot1}=\frac{3a}{b}\)
\(b^3+1+1\ge3\sqrt[3]{b^3\cdot1\cdot1}=3b\)
Cộng vế 3 BĐT trên lại ta được:
\(\frac{1}{a^3}+\frac{a^3}{b^3}+b^3+6\ge3\left(\frac{1}{a}+\frac{a}{b}+b\right)\)
Mà \(3\left(\frac{1}{a}+\frac{a}{b}+b\right)=\left(\frac{1}{a}+\frac{a}{b}+b\right)+2\left(\frac{1}{a}+\frac{a}{b}+b\right)\)
\(\ge\frac{1}{a}+\frac{a}{b}+b+2\cdot3\sqrt[3]{\frac{1}{a}\cdot\frac{a}{b}\cdot b}=\frac{1}{a}+\frac{a}{b}+b+6\) (Cauchy)
\(\Rightarrow\frac{1}{a^3}+\frac{a^3}{b^3}+b^3+6\ge\frac{1}{a}+\frac{a}{b}+b+6\)
\(\Leftrightarrow\frac{1}{a^3}+\frac{a^3}{b^3}+b^3\ge\frac{1}{a}+\frac{a}{b}+b\)
Dấu "=" xảy ra khi: \(\frac{1}{a}=\frac{a}{b}=b\Leftrightarrow\hept{\begin{cases}a^2=b\\b^2=a\end{cases}}\Rightarrow a=b=1\)
Ta có: \(x-2x^2+3\)
\(=-\left(2x^2+2x\right)+\left(3x+3\right)\)
\(=-2x\left(x+1\right)+3\left(x+1\right)\)
\(=\left(3-2x\right)\left(x+1\right)\)
\(A=\frac{2}{3}x^2y^3\div\left(-\frac{1}{3}xy\right)+2x\left(y-1\right)\left(y+1\right)\)
\(=\left[\frac{2}{3}\div\left(-\frac{1}{3}\right)\right]\times\left(x^2\div x\right)\times\left(y^3\div y\right)+2x\left(y^2-1\right)\)
\(=-2xy^2+2xy^2-2x\)
\(=-2x\)( không phụ thuộc vào biến y )
=> đpcm
1) \(A=2x^2+6x=2\left(x^2+3x+\frac{9}{4}\right)-\frac{9}{2}=2\left(x+\frac{3}{2}\right)^2-\frac{9}{4}\ge-\frac{9}{4}\left(\forall x\right)\)
Dấu "=" xảy ra khi: \(2\left(x+\frac{3}{2}\right)^2=0\Rightarrow x=-\frac{3}{2}\)
Vậy Min(A) = -9/4 khi x = -3/2
2) \(B=x^2-2x+y^2-4y+6\)
\(B=\left(x^2-2x+1\right)+\left(y^2-4y+4\right)+1\)
\(B=\left(x-1\right)^2+\left(y-2\right)^2+1\ge1\left(\forall x,y\right)\)
Dấu "=" xảy ra khi: \(\hept{\begin{cases}\left(x-1\right)^2=0\\\left(y-2\right)^2=0\end{cases}}\Rightarrow\hept{\begin{cases}x=1\\y=2\end{cases}}\)
Vậy Min(B) = 1 khi x = 1 và y = 2
3) \(C=x^2-2xy+6y^2-12x+2y+45\)
\(C=\left(x^2-2xy+y^2\right)-12\left(x-y\right)+36+\left(5y^2-10y+5\right)+4\)
\(C=\left(x-y\right)^2-12\left(x-y\right)+36+5\left(y-1\right)^2+4\)
\(C=\left(x-y-6\right)^2+5\left(y-1\right)^2+4\ge4\left(\forall x,y\right)\)
Dấu "=" xảy ra khi: \(\hept{\begin{cases}\left(x-y-6\right)^2=0\\5\left(y-1\right)^2=0\end{cases}}\Rightarrow\hept{\begin{cases}x=7\\y=1\end{cases}}\)
Vậy Min(C) = 4 khi x = 7 và y = 1
4) \(D=\left[\left(x-1\right)\left(x+6\right)\right]\left[\left(x+2\right)\left(x+3\right)\right]\)
\(D=\left(x^2+5x-6\right)\left(x^2+5x+6\right)\)
\(D=\left(x^2+5x\right)^2-36\ge-36\left(\forall x\right)\)
Dấu "=" xảy ra khi: \(\left(x^2+5x\right)^2=0\Rightarrow\orbr{\begin{cases}x=0\\x=-5\end{cases}}\)
Vậy Min(D) = -36 khi x = 0 hoặc x = -5
A = 2x2 + 6x = 2( x2 + 3x + 9/4 ) - 9/2 = 2( x + 3/2 )2 - 9/2 ≥ -9/2 ∀ x
Dấu "=" xảy ra khi x = -3/2
=> MinA = -9/2 <=> x = -3/2
B = x2 - 2x + y2 - 4y + 6 = ( x2 - 2x + 1 ) + ( y2 - 4y + 4 ) + 1 = ( x - 1 )2 + ( y - 2 )2 + 1 ≥ 1 ∀ x, y
Dấu "=" xảy ra khi x = 1 ; y = 2
=> MinB = 1 <=> x = 1 ; y = 2
C = x2 - 2xy + 6y2 - 12x + 2y + 45
= ( x2 - 2xy + y2 - 12x + 12y + 36 ) + ( 5y2 - 10y + 5 ) + 4
= [ ( x2 - 2xy + y2 ) - ( 12x - 12y ) + 36 ] + 5( y2 - 2y + 1 ) + 4
= [ ( x - y )2 - 2( x - y ).6 + 62 ] + 5( y - 1 )2 + 4
= ( x - y - 6 )2 + 5( y - 1 )2 + 4 ≥ 4 ∀ x, y
Dấu "=" xảy ra khi x = 7 ; y = 1
=> MinC = 4 <=> x = 7 ; y = 1
D = ( x - 1 )( x + 2 )( x + 3 )( x + 6 )
= [ ( x - 1 )( x + 6 ) ][ ( x + 2 )( x + 3 ) ]
= ( x2 + 5x - 6 )( x2 + 5x + 6 )
= ( x2 + 5x )2 - 36 ≥ -36 ∀ x
Dấu "=" xảy ra <=> x2 + 5x = 0
<=> x( x + 5 ) = 0
<=> x = 0 hoặc x = -5
=> MinD = -36 <=> x = 0 hoặc x = -5
a,Gọi Đa thức dư là ax+b,thương là Q(x)
Ta có:f(x)=1+x+x19+x199+x2019
=(1-x2)Q(x)+Q(x)+b
=>1+x+x19+x199+x2019=(1-x)(1+x)Q(x)+ax+b (1)
Vì (1) đúng với mọi x,thay x=1 và x=-1 ta đc:
1+1+119+1199+12019=a+b
<=>a+b=5(*)
Với x=1 ta có:
1+(-1)+(-1)99+(-1)199+(-1)2019=a(-1)+b
<=>-a+b=-3(**)
Cộng (*) và (**) vế theo vế ta đc:2b=2=>b=1
Thay b=1 vào (*) ta đc:a=4
Vậy đa thức dư là 4x+1
b,Ta có:(x+1)(x+3)(x+5)(x+7)+2019
=(x+1)(x+7)(x+5)(x+3)+2019
=(x2+8x+7)(x2+8x+15)+2019
=(x2+8x+12-5)(x2+8x+12+3)+2019
=(x2+8x+12)2-2(x2+8x+12)-15+2019
=(x2+8x+12)2-2(x2+8x+12)+2004