Viết biểu thức sau dưới dạng tổng của 2 bình phương
a) x^2+4y+4y^2+26-10x
b) 4y^2+34-10+12y+x^3
c) -10x+y^2-8y+x^2+41
d) x^2+9y^2-12y+29-10x
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{4}x^2\left(x-y\right)^2-4\left(x-3\right)^2\)
\(=\left(\frac{1}{2}x\right)^2\left(x-y\right)^2-2^2\left(x-3\right)^2\)
\(=\left[\frac{1}{2}x\left(x-y\right)\right]^2-\left[2\left(x-3\right)\right]^2\)
\(=\left(\frac{1}{2}x^2-\frac{1}{2}xy\right)^2-\left(2x-6\right)^2\)
\(=\left[\left(\frac{1}{2}x^2-\frac{1}{2}xy\right)-\left(2x-6\right)\right]\left[\left(\frac{1}{2}x^2-\frac{1}{2}xy\right)+\left(2x-6\right)\right]\)
\(=\left(\frac{1}{2}x^2-\frac{1}{2}xy-2x+6\right)\left(\frac{1}{2}x^2-\frac{1}{2}xy+2x-6\right)\)
Rút gọn thôi chứ phân tích sao được ._.
( x - 3 )2 - ( 4x + 5 )2 - 9( x + 1 )2 - 6( x - 3 )( x + 1 )
= x2 - 6x + 9 - ( 16x2 + 40x + 25 ) - 9( x2 + 2x + 1 ) - 6( x2 - 2x - 3 )
= x2 - 6x + 9 - 16x2 - 40x - 25 - 9x2 - 18x - 9 - 6x2 + 12x + 18
= -30x2 - 52x - 7
Sửa đề lại 1 chút là phân tích được mà bn Quỳnh:))
Ta có: \(\left(x-3\right)^2-\left(4x+5\right)^2+9\left(x+1\right)^2-6\left(x-3\right)\left(x+1\right)\)
\(=\left[\left(x-3\right)^2-6\left(x-3\right)\left(x+1\right)+9\left(x+1\right)^2\right]-\left(4x+5\right)^2\)
\(=\left(x-3-9x-9\right)^2-\left(4x+5\right)^2\)
\(=\left(8x+12\right)^2-\left(4x+5\right)^2\)
\(=\left(4x+7\right)\left(12x+17\right)\)
Bài 1:
\(\left(x-y+z\right)^2+\left(z-y\right)^2+\left(x-y+z\right)\left(2y-2z\right)\)
\(=\left(x-y+z\right)^2+2\left(x-y+z\right)\left(y-z\right)+\left(y-z\right)^2\)
\(=\left(x-y+z+y-z\right)^2\)
\(=x^2\)
Bài 2:
đk: \(x\ne\left\{0;-1;-2;-3;-4;-5\right\}\)
Xét BT trái ta có:
\(\frac{1}{x\left(x+1\right)}+\frac{1}{\left(x+1\right)\left(x+2\right)}+...+\frac{1}{\left(x+4\right)\left(x+5\right)}\)
\(=\frac{1}{x}-\frac{1}{x+1}+\frac{1}{x+1}-\frac{1}{x+2}+...+\frac{1}{x+4}-\frac{1}{x+5}\)
\(=\frac{1}{x}-\frac{1}{x+5}\)
\(=\frac{5}{x\left(x+5\right)}=\frac{5}{x^2+5x}\)
GT của biểu thức lớn sẽ là: \(\frac{5}{x^2+5x}\cdot\frac{x^2+5x}{5}=1\) không phụ thuộc vào biến
=> đpcm
Bài 1.
( x - y + z ) + ( z - y )2 + ( x - y + z )( 2y - 2z )
= ( x - y + z ) - 2( x - y + z )( z - y ) + ( z - y )2
= [ ( x - y + z ) - ( z - y ) ]2
= ( x - y + z - z + y )2
= x2
Bài 2. ĐKXĐ tự ghi nhé :))
\(\left(\frac{1}{x^2+x}+\frac{1}{x^2+3x+2}+\frac{1}{x^2+5x+6}+\frac{1}{x^2+7x+12}+\frac{1}{x^2+9x+20}\right)\times\left(\frac{x^2+5x}{5}\right)\)
\(=\left(\frac{1}{x\left(x+1\right)}+\frac{1}{\left(x+1\right)\left(x+2\right)}+\frac{1}{\left(x+2\right)\left(x+3\right)}+\frac{1}{\left(x+3\right)\left(x+4\right)}+\frac{1}{\left(x+4\right)\left(x+5\right)}\right)\times\left(\frac{x\left(x+5\right)}{5}\right)\)
\(=\left(\frac{1}{x}-\frac{1}{x+1}+\frac{1}{x+1}-\frac{1}{x+2}+...+\frac{1}{x+4}-\frac{1}{x+5}\right)\times\left(\frac{x\left(x+5\right)}{5}\right)\)
\(=\left(\frac{1}{x}-\frac{1}{x+5}\right)\times\frac{x\left(x+5\right)}{5}\)
\(=\left(\frac{x+5}{x\left(x+5\right)}-\frac{x}{\left(x+5\right)}\right)\times\frac{x\left(x+5\right)}{5}\)
\(=\frac{x+5-x}{x\left(x+5\right)}\times\frac{x\left(x+5\right)}{5}\)
\(=\frac{5}{x\left(x+5\right)}\times\frac{x\left(x+5\right)}{5}=1\)
=> đpcm
Câu 1:
a) \(2x^2+5x-3=\left(2x^2+6x\right)-\left(x+3\right)\)
\(=2x\left(x+3\right)-\left(x+3\right)=\left(x+3\right)\left(2x-1\right)\)
b) \(x^4+2009x^2+2008x+2009\)
\(=\left(x^4-x\right)+\left(2009x^2+2009x+2009\right)\)
\(=x\left(x-1\right)\left(x^2+x+1\right)+2009\left(x^2+x+1\right)\)
\(=\left(x^2+x+1\right)\left(x^2-x+2009\right)\)
c) \(\left[\left(x+2\right)\left(x+8\right)\right]\left[\left(x+4\right)\left(x+6\right)\right]=-16\) (đã sửa đề)
\(\Leftrightarrow\left(x^2+10x+16\right)\left(x^2+10x+24\right)+16=0\)
\(\Leftrightarrow\left(x^2+10x+20\right)^2-16+16=0\)
\(\Leftrightarrow\left(x^2+10x+20\right)^2=0\)
\(\Leftrightarrow\left(x+5\right)^2-5=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=-5-\sqrt{5}\\x=-5+\sqrt{5}\end{cases}}\)
Câu 1.
a) 2x2 + 5x - 3 = 2x2 + 6x - x - 3 = 2x( x + 3 ) - ( x + 3 ) = ( x + 3 )( 2x - 1 )
b) x4 + 2009x2 + 2008x + 2009
= x4 + 2009x2 + 2009x - x + 2009
= ( x4 - x ) + ( 2009x2 + 2009x + 2009 )
= x( x3 - 1 ) + 2009( x2 + x + 1 )
= x( x - 1 )( x2 + x + 1 ) + 2009( x2 + x + 1 )
= ( x2 + x + 1 )[ x( x - 1 ) + 2009 ]
= ( x2 + x + 1 )( x2 - x + 2009 )
c) ( x + 2 )( x + 4 )( x + 6 )( x + 8 ) = 16 ( xem lại đi chứ không phân tích được :v )
Câu 2.
3x2 + x - 6 - √2 = 0
<=> ( 3x2 - 6 ) + ( x - √2 ) = 0
<=> 3( x2 - 2 ) + ( x - √2 ) = 0
<=> 3( x - √2 )( x + √2 ) + ( x - √2 ) = 0
<=> ( x - √2 )[ 3( x + √2 ) + 1 ] = 0
<=> \(\orbr{\begin{cases}x-\sqrt{2}=0\\3\left(x+\sqrt{2}\right)+1=0\end{cases}}\)
+) x - √2 = 0 => x = √2
+) 3( x + √2 ) + 1 = 0
<=> 3( x + √2 ) = -1
<=> x + √2 = -1/3
<=> x = -1/3 - √2
Vậy S = { √2 ; -1/3 - √2 }
Câu 3.
A = x( x + 1 )( x2 + x - 4 )
= ( x2 + x )( x2 + x - 4 )
Đặt t = x2 + x
A = t( t - 4 ) = t2 - 4t = ( t2 - 4t + 4 ) - 4 = ( t - 2 )2 - 4 ≥ -4 ∀ t
Dấu "=" xảy ra khi t = 2
=> x2 + x = 2
=> x2 + x - 2 = 0
=> x2 - x + 2x - 2 = 0
=> x( x - 1 ) + 2( x - 1 ) = 0
=> ( x - 1 )( x + 2 ) = 0
=> x = 1 hoặc x = -2
=> MinA = -4 <=> x = 1 hoặc x = -2
Áp dụng bđt : \(xy+yz+xz\le\frac{\left(x+y+z\right)^2}{3}\)(1)
CM bđt đúng: Từ (1) => 3xy + 3yz + 3xz \(\le\)x2 + y2 + z2 + 2xy + 2xz + 2yz
<=> 2x2 + 2y2 + 2z2 - 2xy - 2yz - 2xz \(\ge\)0
<=> (x - y)2 + (y - z)2 + (x - z)2 \(\ge\)0 (luôn đúng với mọi x;y;z)
Khi đó: P = \(ab+bc+ac\le\frac{\left(a+b+c\right)^2}{3}=\frac{3^2}{3}=3\)
Dấu "=" xảy ra <=> a = b = c = 1
Vậy MaxP = 3 khi a = b = c = 1
Ta có đánh giá quen thuộc sau: \(\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\)(*)
Thật vậy: (*)\(\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ca\right)\ge3\left(ab+bc+ca\right)\Leftrightarrow\)\(a^2+b^2+c^2\ge ab+bc+ca\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)*đúng*
Áp dụng, ta được: \(ab+bc+ca\le\frac{\left(a+b+c\right)^2}{3}=\frac{3^2}{3}=3\)
Đẳng thức xảy ra khi a = b = c = 1
Ta có:f(x)=(x-2)Q(x)+5 (1)
f(x)=(x-3)G(x)+7 (2)
Gọi dư trg phép chia f(x) cho (x-2)(x-3) là ax+b
Ta có:f(x)=(x-2)(x-3)(1-x2)+ax+b (3)
Vì (1) và (3) đúng với mọi xx=2 ta có:
f(2)=5
f(20=2a+b
=>2a+b=5(*)
Vì (2) và (3) đúng với moin x nên với x=3 ta có:
f(3)=7
f(3)=3a+b
=>3a+b=7(**)
Lấy (**) và (*) ta đc b=1
Vậy f(x)=(x-2)(x-3)(1+x2)+2x+1
a,Gọi Đa thức dư là ax+b,thương là Q(x)
Ta có:f(x)=1+x+x19+x199+x2019
=(1-x2)Q(x)+Q(x)+b
=>1+x+x19+x199+x2019=(1-x)(1+x)Q(x)+ax+b (1)
Vì (1) đúng với mọi x,thay x=1 và x=-1 ta đc:
1+1+119+1199+12019=a+b
<=>a+b=5(*)
Với x=1 ta có:
1+(-1)+(-1)99+(-1)199+(-1)2019=a(-1)+b
<=>-a+b=-3(**)
Cộng (*) và (**) vế theo vế ta đc:2b=2=>b=1
Thay b=1 vào (*) ta đc:a=4
Vậy đa thức dư là 4x+1
b,Ta có:(x+1)(x+3)(x+5)(x+7)+2019
=(x+1)(x+7)(x+5)(x+3)+2019
=(x2+8x+7)(x2+8x+15)+2019
=(x2+8x+12-5)(x2+8x+12+3)+2019
=(x2+8x+12)2-2(x2+8x+12)-15+2019
=(x2+8x+12)2-2(x2+8x+12)+2004
PTKA = 2H + 1S + 4O
= 2.1 + 1.32 + 4.16
= 2 + 32 + 64
= 98
% khối lượng của 2H so với PTKA = \(\frac{2}{98}\cdot100=2,040...\approx2,04\%\)
% khối lượng của 1S so với PTKA = \(\frac{32}{98}\cdot100=32,653...\approx32,65\%\)
% khối lượng của 4O so với PTKA = \(\frac{64}{98}\cdot100=65,306...\approx65,31\%\)
a) x2 + 4y + 4y2 + 26 - 10x = ( x2 - 10x + 25 ) + ( 4y2 + 4y + 1 ) = ( x - 5 )2 + ( 2y + 1 )2
b) 4y2 + 34 - 10x + 12y + x2 = ( x2 - 10x + 25 ) + ( 4y2 + 12y + 9 ) = ( x - 5 )2 + ( 2y + 3 )2
c) -10x + y2 - 8y + x2 + 41 = ( x2 - 10x + 25 ) + ( y2 - 8y + 16 ) = ( x - 5 )2 + ( y - 4 )2
d) x2 + 9y2 - 12y + 29 - 10x = ( x2 - 10x + 25 ) + ( 9y2 - 12y + 4 ) = ( x - 5 )2 + ( 3y - 2 )2
a) \(x^2+4y+4y^2+26-10x\)
\(=\left(x^2-10x+25\right)+\left(4y^2+4y+1\right)\)
\(=\left(x-5\right)^2+\left(2y+1\right)^2\)
b) \(4y^2+34-10x+12y+x^2\) đề ntn à?
\(=\left(4y^2+12y+9\right)+\left(x^2-10x+25\right)\)
\(=\left(2y-3\right)^2+\left(x-5\right)^2\)
c) \(-10x+y^2-8y+x^2+41\)
\(=\left(x^2-10x+25\right)+\left(y^2-8y+16\right)\)
\(=\left(x-5\right)^2+\left(y-4\right)^2\)
d) \(x^2+9y^2-12y+29-10x\)
\(=\left(x^2-10x+25\right)+\left(9y^2-12y+4\right)\)
\(=\left(x-5\right)^2+\left(3y-2\right)^2\)