K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 4 2024

A(x) = 2x² - 3x³ + x⁴ - 4x + 1

= x⁴ - 3x³ + 2x² - 4x + 1

B(x) = -3x³ + x⁴ - x² + 2 - 3x + 3x²

= x⁴ - 3x³ + (-x² + 3x²) - 3x + 2

= x⁴ - 3x³ + 2x² - 3x + 2

D(x) = A(x) - B(x)

= (x⁴ - 3x³ + 2x² - 4x + 1) - (x⁴ - 3x³ + 2x² - 3x + 2)

= x⁴ - 3x³ + 2x² - 4x + 1 - x⁴ + 3x³ - 2x² + 3x - 2

= (x⁴ - x⁴) + (-3x³ + 3x³) + (2x² - 2x²) + (-4x + 3x) + (1 - 2)

= -x - 1

c) Cho D(x) = 0

-x - 1 = 0

x = -1

Vậy nghiệm của đa thức D(x) là x = -1

14 tháng 12 2024

Toán 

a: Ta có: \(AM=MB=\dfrac{AB}{2}\)
\(AN=NC=\dfrac{AC}{2}\)

mà AB=AC

nên AM=MB=AN=NC

BE=BD+DE

CD=CE+ED

mà BD=CE

nên BE=CD

Xét ΔMBE và ΔNCD có

MB=NC

\(\widehat{MBE}=\widehat{NCD}\)

BE=CD

Do đó: ΔMBE=ΔNCD

=>ME=ND

b: Ta có: ΔMBE=ΔNCD

=>\(\widehat{MEB}=\widehat{NDC}\)

=>\(\widehat{IDE}=\widehat{IED}\)

=>ID=IE

c: Ta có: \(\widehat{IDE}+\widehat{IDB}=180^0\)

\(\widehat{IED}+\widehat{IEC}=180^0\)

mà \(\widehat{IED}=\widehat{IDE}\)

nên \(\widehat{IDB}=\widehat{IEC}\)

Xét ΔIDB và ΔIEC có

ID=IE

\(\widehat{IDB}=\widehat{IEC}\)

DB=CE

Do đó: ΔIDB=ΔIEC
=>IB=IC

=>I nằm trên đường trung trực của BC(1)

ta có: AB=AC

=>A nằm trên đường trung trực của BC(2)

Từ (1),(2) suy ra AI là đường trung trực của BC

=>AI\(\perp\)BC

19 tháng 4 2024

còn d thì sAo

 

a: Xét ΔBAE vuông tại A và ΔBDE vuông tại D có

BE chung

BA=BD

Do đó: ΔBAE=ΔBDE

b: Xét ΔBFC có

FD,CA là các đường cao

FD cắt CA tại E

Do đó: E là trực tâm của ΔBFC

=>BE\(\perp\)FC

mà BE\(\perp\)BG

nên FC//BG

18 tháng 4 2024

Ai giúp vs

\(M\left(x\right)=3\left(x^2-4\right)+x^4+12\)

\(=3x^2-12+x^4+12=x^4+3x^2=x^2\left(x^2+3\right)\)

Đặt M(x)=0

=>\(x^2\left(x^2+3\right)=0\)

=>\(x^2=0\)

=>x=0

18 tháng 4 2024

Thể tích bể:

200 . 20 = 4000 (l) = 4 (m³)

Chiều dài của bể:

0,8 . 2 = 1,6 (m)

Chiều cao của bể:

4 : 0,8 : 1,6 = 3,125 (m) ≈ 3,1 (m)

AH
Akai Haruma
Giáo viên
18 tháng 4 2024

Lời giải:

Chiều dài bể nước: $0,8\times 2=1,6$ (m) 

Thể tích của bể: 

$200\times 20=4000$ (lít)

Đổi $4000$ lít = $4$ m3

Chiều cao của bể:

$4:0,8:1,6=3,1$ (m)

AH
Akai Haruma
Giáo viên
18 tháng 4 2024

Đề không đầy đủ. Bạn xem lại nhé.

cho tam giác ABC(AB<AC). AD là tia phân giác của góc BAC(D thuộc BC). Trên cạnh AC lấy M sao cho AM=AB.                                                                 a)CM: tam giác ABD=tam giác AMD                                                             b)Gọi I là giao điểm của AD và BM. CM: I là trung điểm BM và AI vuông góc BM                                           ...
Đọc tiếp

cho tam giác ABC(AB<AC). AD là tia phân giác của góc BAC(D thuộc BC). Trên cạnh AC lấy M sao cho AM=AB.                                                                 a)CM: tam giác ABD=tam giác AMD                                                             b)Gọi I là giao điểm của AD và BM. CM: I là trung điểm BM và AI vuông góc BM                                                                                                         c)Gọi K là trung điểm AM, trên tia đối KB lấy P sao cho cho KB=KP. CM: MP//AB                                                                                                   d)Trên tia đối MP lấy E sao cho MP=ME. CM 3 điểm A,I,E thẳng hàng                                                                                                        

1

a: Xét ΔABD và ΔAMD có

AB=AM

\(\widehat{BAD}=\widehat{MAD}\)

AD chung

Do đó: ΔABD=ΔAMD

b: Ta có: ΔABD=ΔAMD

=>DB=DM

=>D nằm trên đường trung trực của BM(1)

Ta có: AB=AM

=>A nằm trên đường trung trực của BM(2)

Từ (1),(2) suy ra AD là đường trung trực của BM

=>AD\(\perp\)BM tại I và I là trung điểm của BM

c: Xét ΔKMP và ΔKAB có

KM=KA

\(\widehat{MKP}=\widehat{AKB}\)(hai góc đối đỉnh)

KP=KB

Do đó: ΔKMP=ΔKAB

=>\(\widehat{KMP}=\widehat{KAB}\)

=>MP//AB

18 tháng 4 2024

Cho \(k\left(x\right)=0\)
\(\Rightarrow\left(x+8\right)\left(x^2-\dfrac{9}{25}\right)=0\)
\(\Rightarrow\left\{{}\begin{matrix}x+8=0\\x^2-\dfrac{9}{25}=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=-8\\x^2=\dfrac{9}{25}\Rightarrow x=\pm\dfrac{3}{5}\end{matrix}\right.\)
Vậy \(k\left(x\right)\) có 3 nghiệm là \(x\in\left\{-8;\dfrac{3}{5};-\dfrac{3}{5}\right\}\)

Chọn A