giải pt và biểu diễn tập nghiệm trên mặt phẳng tọa độ : x- 2y = 5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a=2 => Hệ vô nghiệm \(\hept{\begin{cases}x\in R\\y=\frac{5-2x}{2}\end{cases}}\)
a=-2 => Hệ vô nghiệm
a\(\ne\pm2\)=> Hệ có nghiệm duy nhất \(\left(\frac{5+2a}{2+a};\frac{1}{2+a}\right)\)
Ta có \(x^2+y^3\ge x^3+y^4\Leftrightarrow x^2+y^2+y^3\ge x^3+y^2+y^4\)
Áp dụng bđt AM-GM ta có \(y^4+y^2\ge2y^3\)
\(\Rightarrow x^2+y^3+y^2\ge x^3+2y^3\)
\(\Rightarrow x^3+y^3\le x^2+y^2\left(1\right)\)
Áp dụng bđt Cauchy - Schwarz ta có
\(\left(x^2+y^2\right)^2\le\left[\left(\sqrt{x}\right)^2+\left(\sqrt{y}\right)^2\right]\left[\left(\sqrt{x^3}\right)^2+\left(\sqrt{y^3}\right)^2\right]=\left(x+y\right)\left(x^3+y^3\right)\)
\(\le\left(x+y\right)\left(x^2+y^2\right)\)
\(\Rightarrow x^2+y^2\le x+y\left(2\right)\)
Lại có
\(\left(x+y\right)^2\le2\left(x^2+y^2\right)\le2\left(x+y\right)\)
\(\Rightarrow x+y\le2\left(3\right)\)
Từ (1),(2),(3) => đpcm
Đối với bài này ta cũng có thể chia các khoảng giá trị để chứng minh
(Nhưng hơi dài và khó hiểu nên mình k làm )
Học tốt!!!!!!!!!
\(A=\frac{2\left(\sqrt{7}+\sqrt{6}\right)}{1}-2\sqrt{7}+3\sqrt{6}\)
\(=-\sqrt{6}\)
Học tốt!!!!!!!!!!!!!!!!!!!!!!!
Lấy pt(1) nhân với pt(2) ta được:
\(\left(x+y\right)\left(x^2+y^2-xy\right)=2x^3\Leftrightarrow x^3+y^3=2x^3\Leftrightarrow x^3=y^3\Leftrightarrow x=y\)
Thay vào pt (1) của hệ ta được: \(x^2+x^2-x.x=2\Leftrightarrow x^2=2\Leftrightarrow\orbr{\begin{cases}x=\sqrt{2}\Rightarrow y=\sqrt{2}\\x=-\sqrt{2}\Rightarrow y=-\sqrt{2}\end{cases}}\)
Vậy ...
\(x^2+y+\frac{3}{4}\ge x^2+\frac{1}{4}+y+\frac{1}{2}\ge2\sqrt{x^2\cdot\frac{1}{4}}+\left(y+\frac{1}{2}\right)\ge x+y+\frac{1}{2}\)
\(\Rightarrow VT\ge\left(x+y+\frac{1}{2}\right)^2=\left[\left(x+\frac{1}{4}\right)+\left(y+\frac{1}{4}\right)\right]^2\ge4\left(x+\frac{1}{4}\right)\left(y+\frac{1}{4}\right)\)
\(=\left(2x+\frac{1}{2}\right)\left(2y+\frac{1}{2}\right)\)
Dấu "=" xảy ra tại \(x=y=\frac{1}{2}\)
Vậy \(x=y=\frac{1}{2}\)
\(PT\Leftrightarrow x^2y^2+y^3+x^3+\frac{3}{4}\left(x^2+y^2\right)+xy+\frac{3}{4}\left(x+y\right)+\frac{9}{16}=4xy+x+y+\frac{1}{4}.\)
\(\Leftrightarrow x^2y^2+\left(x+y\right)^3-3xy\left(x+y\right)+\frac{3}{4}\left[\left(x+y\right)^2-2xy\right]+\frac{1}{4}\left(x+y\right)-3xy+\frac{5}{16}=0\)
Đặt \(x+y=a,xy=b\)
\(\Rightarrow b^2+a^3-3ab+\frac{3}{4}\left(a^2-2b\right)+\frac{a}{4}-3b+\frac{5}{16}=0\)
\(\Leftrightarrow16b^2+16a^3-48ab+12a^2-24b+4a-48b+5=0\)
\(\Leftrightarrow16b^2+16a^3-48ab+12a^2-72b+4a+5=0\)
Đến đây phân tích thành nhân tử hay sao ấy, chưa nghĩ ra :P
Ta có: \(B=\frac{\left(\sqrt{x}+3\right)\left(\sqrt{x}+1\right)+5\left(\sqrt{x}+1\right)+4}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)
\(=\frac{x+2\sqrt{x}-3+5\sqrt{x}+5+4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}+6\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\frac{\sqrt{x}+6}{\sqrt{x}-1}\)
do đó \(P=\frac{\sqrt{x}-1}{\sqrt{x}+1}.\frac{\sqrt{x}-6}{\sqrt{x}-1}=\frac{\sqrt{x}-6}{\sqrt{x}+1}=1-\frac{7}{\sqrt{x}+1}\)
Vì \(x\ge0\Rightarrow0< \frac{7}{\sqrt{x}+1}\le7\)
Để P nguyên thì \(\frac{7}{\sqrt{x}+1}\in Z\)
do đó \(\frac{7}{\sqrt{x}+1}\in\left\{1,2,3,4,5,6,7\right\}\)
Đến đây xét từng TH là ra
rút gọn B ta có B=\(\frac{\sqrt{x}+6}{\sqrt{x}-1}\)\(\Rightarrow\)\(AB=\frac{\sqrt{x}+6}{\sqrt{x}+1}\in Z\)
=\(1+\frac{5}{\sqrt{x}+1}\)
Vì 1\(\in Z\) nên để P thuộc Z thì \(\frac{5}{\sqrt{x}+1}\in Z\)
\(\Rightarrow\left(\sqrt{x}+1\right)\inƯ\left(5\right)=\pm1;\pm5\)
Đến đây thì ez rồi