cho hpt mx+y=5 và 2x-y=-2.
a) giải hpt với m=5
b) Xác định giá trị của m để hpt có nghiệm duy nhất và thỏa mãn 2x+3y=12
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
< => X2 + 2X + 1 + 2X + 3 +1 - 2|2X +3 =0
<=> ( x+1 )2 + (| 2x + 3 -1)2 =0
= > x =-1 và 2x+ 3 = 1
=> x =-1
25x83=2075
mình cũng gặp trường hợp giống bạn rồi nhưng mình không sao mà cất nghĩa được
25 x 83 =2075 .
TẠI CẬU TRẢ LỜI ÍT QUÁ THUI MÀ CẬU PHẢI NHỜ CÀNG NHIỀU NGƯỜI K CÀNG TỐT !
\(a.\Delta MAD\&\Delta MBA:\widehat{MAD}=\widehat{MBA}\left(=\frac{1}{2}\widebat{AD}\right);\widehat{AMB}=\widehat{AMD}\Rightarrow\Delta MAD~\Delta MBA\left(g.g\right)\Rightarrow MD^2=MB.MC\)b.Do I là trung điểm dây CD nên OI vuông góc CD mà ^SBO=90=>S;B;O;I cùng thuộc một đtròn
Mà dễ thấy S;B;A;O cùng thuộc một đtròn nên S;B;I;O;A cùng thuộc một đtròn
Do đó ^SIA=^SBA,^SIB=^SAB.Mà ^SAB=^SBA(do SA,SB là tiếp tuyến (O))=>^SIA=^SIB=>Đpcm
c.^DIE=^DCA=^DBE=>B;D;E;I cùng thuộc một đtròn=>^DEB=^DIB=^SAB=>DE//SA=>DE//BC
d.
\(\hept{\begin{cases}mx+y=4\\x-my=1\end{cases}\Rightarrow\hept{\begin{cases}m+m^2y+y=4\\x=1+my\end{cases}}}\)
\(\Rightarrow\hept{\begin{cases}x=1+my\\y\left(m+1\right)=4-m\end{cases}\Rightarrow\hept{\begin{cases}y=\frac{4-m}{m^2+1}\\x=\frac{m^2+1+4m-m^2}{m^2+1}=\frac{4m+1}{m^2+1}\end{cases}}}\)
\(\Rightarrow x+y=\frac{8}{m^2+1}\Leftrightarrow\frac{4-m+4m+1}{m^2+1}=\frac{8}{m^2+1}\)
<=> 5+3m=8 <=> m=1
\(\Rightarrow\hept{\begin{cases}x=\frac{4+1}{1+1}=\frac{5}{2}\\y=\frac{4-1}{2}=\frac{3}{2}\end{cases}}\)
Bạn tự vẽ hình nha.
a, Xét (O) có OA vuông góc với CD tại I suy ra I là trung điểm CD.
Khi đó tứ giác ACOD có 2 đường chéo vuông góc với nhau và cắt nhau tại trung điểm mỗi đường nên tứ giác ACOD là hình thoi.
b, Do C thuộc đường tròn đường kính AB nên \(\widehat{ACB}=90^o\)
Xét \(\Delta ACB\)vuông tại C có CI là đường cao nên: \(CI^2=AI.IB\Rightarrow\left(2CI\right)^2=4AI.IB\Leftrightarrow CD^2=4AI.IB\left(đpcm\right)\)
Đặt \(x+1=u;y-2=v\)
Hệ trở thành \(\hept{\begin{cases}\frac{2}{u}+\frac{1}{v}=\frac{1}{3}\\\frac{3}{u}+\frac{2}{v}=\frac{1}{5}\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{4}{u}+\frac{2}{v}=\frac{2}{3}\left(1\right)\\\frac{3}{u}+\frac{2}{v}=\frac{1}{5}\left(2\right)\end{cases}}\)
Lấy (1) - (2), ta được\(\frac{1}{u}=\frac{7}{15}\Leftrightarrow u=\frac{15}{7}\)
\(\Rightarrow x=\frac{15}{7}-1=\frac{8}{7}\)
Từ đó tính được \(y=\frac{1}{3}\)
Vậy hệ có 1 nghiệm \(\left(\frac{8}{7};\frac{1}{3}\right)\)
<=> \(\hept{\begin{cases}\frac{4}{x+1}+\frac{2}{y-2}=\frac{2}{3}\\\frac{3}{x+1}+\frac{2}{y-2}=\frac{1}{5}\end{cases}}\)
<=> \(\hept{\begin{cases}\frac{1}{x+1}=\frac{7}{15}\\\frac{3}{x+1}+\frac{2}{y-2}=\frac{1}{5}\end{cases}}\)
<=> \(\hept{\begin{cases}x=\frac{8}{7}\\y=\frac{7}{5}\end{cases}}\)
<=> \(\hept{\begin{cases}\frac{2}{x}+\frac{4}{y}=\frac{2}{3}\\\frac{2}{x}-\frac{3}{y}=\frac{1}{4}\end{cases}}\)
<=> \(\hept{\begin{cases}\frac{7}{y}=\frac{5}{12}\\\frac{1}{x}+\frac{2}{y}=\frac{1}{3}\end{cases}}\)
<=> \(\hept{\begin{cases}x=\frac{14}{3}\\y=\frac{84}{5}\end{cases}}\)
1) Cho hệ phương trình:
{mx+y=52x−y=−2(I){mx+y=52x−y=−2(I)
a) Với m=1 ta có hệ phương trình:
{x+y=52x−y=−2{x+y=52x−y=−2
Cộng vế với vế ta được:
3x=3⇔x=1⇒y=2x+2=43x=3⇔x=1⇒y=2x+2=4
Vậy với m=11m=11 thì hệ phương trình (I) có nghiệm x=1 và y=4
b) Nghiệm (x0,y0)(x0,y0) của (I) thỏa mãn x0+y0=1x0+y0=1
nên ta có hệ phương trình:
⎧⎪⎨⎪⎩x+y=1(1)mx+y=5(2)2x−y=−2(3){x+y=1(1)mx+y=5(2)2x−y=−2(3)
Lấy (1) + (3) ta được: 3x=−1⇒x=−13⇒y=1−x=433x=−1⇒x=−13⇒y=1−x=43
Thay vào (2) suy ra m=5−yx=−11m=5−yx=−11
Vậy với m=−11m=−11 thì nghiệm của hệ phương trình (I) có tổng là 1.
2) Từ x+my=2⇒x=2−myx+my=2⇒x=2−my
Thay vào phương trình mx−2y=1mx−2y=1 ta được:
m(2−my)−2y=1⇒y=2m−1m2+2m(2−my)−2y=1⇒y=2m−1m2+2
⇒x=2−m2m−1m2+2⇒x=2−m2m−1m2+2
x=m+4m2+2x=m+4m2+2
Do m2+2>0m2+2>0 ∀m∀m
⇒x>0⇒m+4>0⇒m>−4⇒x>0⇒m+4>0⇒m>−4 và y<0⇒2m−1<0⇒m<12y<0⇒2m−1<0⇒m<12
Vậy với −4<m<12−4<m<12 thì phương trình có nghiệm duy nhất mà x>0,y<0
I don't know how to do this